
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 3, Mar. 2024 633
Copyright ⓒ 2024 KSII

http://doi.org/10.3837/tiis.2024.03.006 ISSN : 1976-7277

A UML-based Approach towards Test
Case Generation and Optimization

Shahid Saleem1, Saif U. R. Malik2, Bilal Mehboob3, Roobaea Alroobaea4, Sultan Algarni5,

Abdullah M. Baqasah6, Naveed Ahmad7 and Muhammad Hasnain8,*
1,8 Faculty of Computer Science, Lahore Leads University Lahore, Punjab Pakistan

[e-mail: shahidnoon16@hotmail.com, drhasnain.it@leads.edu.pk]
2 Cybernetica AS Tallinn Estonia [e-mail: saif.rehmanmalik@gmail.com]

3 Department of Software Engineering, Superior University Lahore, 54000, Pakistan
[email: Bilal.mehboob@superior.edu.pk]

4 Department of Computer Science, College of Computers and Information Technology, Taif University, P. O.
Box 11099, Taif 21944, Saudi Arabia [e-mail: r.robai@tu.edu.sa]

5 Department of Information Systems, Faculty of Computing and Information Technology, King Abdulaziz
University (KAU), Jeddah 21589, Saudi Arabia [email : saalgarni@kau.edu.sa]

6 Department of Information Technology, College of Computers and Information Technology, Taif University,
Taif 21974, Saudi Arabia [email : a.baqasah@tu.edu.sa]

7 Department of Software Engineering, National University of Computer and Emerging Sciences, Islamabad, P.O.
Box 42230, Pakistan [email : naveed.ahmad@nu.edu.pk]

*Corresponding author: Muhammad Hasnain

Received November 23, 2023; revised January 27, 2024; accepted February 26, 2024;
 published March 31, 2024

Abstract

Software testing is an important phase as it ensures the software quality. The software testing
process comprises of three steps: generation, execution, and evaluation of test cases. Literature
claims the usage of single and multiple 'Unified Modeling Language' (UML) diagrams to
generate test cases. Using multiple UML diagrams increases test case coverage. However, the
existing approaches show limitations in test case generation from UML diagrams. Therefore,
in this research study, we propose an approach to generate the test cases using UML State
Chart Diagram (SCD), Activity Diagram (AD), and Sequence Diagram (SD). The proposed
approach transforms UML diagrams into intermediate forms: SCD Graph, AD Graph, and SD
Graph respectively. Furthermore, by integrating these three graphs, a System Testing Graph
(STG) is formed. Finally, test cases are identified from STG by using a traversal algorithm
such as Depth First Search (DFS) that is an optimization method. The results show that the
proposed approach is better compared to existing approaches in terms of coverage and
performance. Moreover, the generated test cases have the ability to detect faults at the unit
level, integration, and system level testing.

Keywords: Activity Diagram, State Chart Diagram, Sequence Diagram, System Testing
Graph, Model Based Testing, Test Case Generation.

634 Saleem et al.: A UML-based Approach towards
Test Case Generation and Optimization

1. Introduction

Software testing is an essential phase in Software Development Life Cycle (SDLC) [1]. It is
the process of executing a program on a set of well-designed tests with the intent of discovering
error [2]. It aims to identify flaws, bugs, defects and errors in the program. To assess the real
results and compare them with the required and expected results, it needs to run a program
with a number of test suites. A software product quality is based on how in-depth it is tested.
Software testing is also used to test the product for other quality factors like security, efficiency,
usability, maintainability, integrity, portability, compatibility and reliability [3]. It starts from
the initial phase and continues throughout the SDLC to reduce cost, time and defects. The
main objectives of software testing include; identifying bugs, suggesting changes and
modification, checking behavior according to the specification and to ensure quality [4].
 It is reported in the literature that a huge budget (50%) of SDLC is spent on testing [5] [6].
A drastic increase in the usage of a computer application enhances the size of a software
system and makes it more complex, that’s why testing becomes more error-prone step in
software development process. Many applications are safety critical, so reliability is important.
In other words, a quality application is required to meet high reliability. The most common
and important methodology from existing techniques is followed to increase reliability.
Therefore, software testing is an important part of software quality assurance (SQA) in SDLC.
 The testing process is primarily divided into three phases i.e. generation, execution and
evaluation [6]. Generation of test cases is found more problematic and error-prone step in the
testing process [7]. Test case execution and evaluation are relatively easy to perform; therefore,
most of the researchers focus on test cases generation (TCG). In literature, different methods
have been used to generate test cases i.e. Scenario Based (SB), Code Based (CB) and Model
Based (MB) testing [8]. In SB approaches, the source of test case generation is requirement
specification, in CB it is the code and in MB approach uses the system models. Among these
methods, MB is effective and efficient than CB because it includes both source code and
specification [7]. Models are built by using requirement specification and are helpful to
generate source code. The model captures the important information from the specification
which is the base for implementation. MB has the ability to identify such type of errors which
are not easily identified by CB. There are many advantages of MB i.e. it is easy to understand,
reduces the testing time, focuses on specification coverage, and enables the early identification
of faults and independence from implementation.

Therefore, an MB approach to generate test cases has the advantage of applying testing
processes throughout the SDLC and widely used for TCG because it requires less testing time
and effort [9]. In MB approach, various system models are used to generate test cases such as
Unified Modeling Language (UML), Data Flow Diagram (DFD), Graph Transformation
System (GTS), Entity Relationship Diagram (ERD) and Abstract State Machine (ASM) [7].

The Object Management Group (OMG) standard is widely used in software system industry
[10]. It became an industrial de-facto standard for visualization [7]. UML language is used to
design, construct, artifact and modify system specifications [11]. It is a standard language for
modeling software blueprints. It designs both static and dynamic view of the system and shows
different aspects [5]. Different types of models are widely used in industry. All aspects of a
system are not covered by a single model, so UML defines numerous type of diagrams for
possible aspects of the system [3]. With the wide acceptance of UML in the software industry,
researchers started investigating how UML-based model is useful for testing? To find the
answer, a number of software testing techniques have been proposed based on UML models.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 3, March 2024 635

Of late, TCG from UML models such as SCD, AD and SD has received attention from
researchers. As discussed in [12], a collaboration diagram represents the dynamic behavior of
objects unlike other diagrams. It is found that generation of test cases using individual
diagrams has certain problems. As reported in [13] that generated test cases based on SCD
only deal with the testing of a single object of the class. In the case of a complex system where
multiple objects interact for the required system’s behavior, the existing technique is
inadequate. Test cases generated from AD reported in [5] [10] [14] do not give any state
information. Therefore, the state of the object remains unknown during execution. A system
behaves differently to same input according to its state. So information of state and object
interaction is necessary for effective TCG. TCG from SD only address the interaction faults
[15] [16]. To overcome these issues, researchers have proposed approaches based on
combinational UML models. Authors in [6] claim that by merging multiple UML model
coverage of test cases increased and helped to detect more faults.
Contribution of this study is as follows:

In this study, we proposed an approach to generate test cases using combinational UML
model i.e. SCD, AD and SD. The first step is to transform SCD, AD and SD into an
intermediate form State Chart Diagram Graph (SCDG), Activity Diagram Graph (ADG) and
Sequence Diagram Graph (SDG), respectively. The second step is to merge the SCDG, ADG,
and SDG to create a combined graph called System Testing Graph (STG). In the third step, a
traversal algorithm Depth First Search (DFS) method is used to construct test paths by
traversing STG. Finally, the optimized test paths are generated. A tool is developed to
demonstrate the proposed methodology. The proposed approach is evaluated on two key cases:
“ATM card validation” and “library book issue”.

The rest of paper is organized as follows:
Section 2 briefly describes the basic concepts of testing, Section 3 presents an overview of the
related work on software testing and test case generation. Section 4 presents our proposed
approach followed by experimental results and finally in section 5. Section 6 concludes and
summarizes the main points of the study.

2. Basic Concepts
In this section, we describe different concepts and terminology that we used in rest of paper.

2.1 Activity Diagram
 The AD is a UML diagram that explains a process in a system. It is mostly useful for
demonstrating the flow of activities within a system, software process and business process.
The AD is a visual representation to depict the dynamic behavior of a specific task. It is often
used in the initial phases of software development to visualize and understand the steps and
actions involved in a particular process. It achieves this by modeling the flow of control from
one activity to another activity [17] [18]. In accumulation to defining the sequence of activities,
an AD also captures the representation of data interactions within the system, providing a
comprehensive visualization of both the process flow and the inherent data modeling.

2.2 State Chart Diagram
A SCD is a type of UML diagram that is aimed to visualize the dynamic behavior of a system
in response to external stimuli. A SCD shows different states of an object or a system and the
transitions between these states. They are mainly useful for capturing the life cycle of an object
or the behavior of a system over time.

636 Saleem et al.: A UML-based Approach towards
Test Case Generation and Optimization

SCDs are beneficial for modeling the behavior of complex systems that can be in different
states and transition between them based on events and conditions. They provide a visual
representation of the system's behavior over time.
A SCD is a graphical tool that demonstrates the lifecycle of an object, portraying its various
states and transitions to expressive the vibrant behavior of a software system. This type of
diagram is particularly beneficial for modeling objects that respond to external stimuli or
specific events [18].

2.3 Sequence Diagram
Sequence diagram (SD) captures the interaction between objects and order of interaction [3].
It is most common interaction diagram, which mainly focuses on the interaction between two
objects through exchanging the messages in lifelines.
The SD provides a sequential representation of interactions, a valuable instrument for
understanding the flow of interaction among objects in a system. They are normally used
during the design phase to capture and communicate the dynamic aspects of a system.

2.4 Coverage Criteria
Numerous approaches exist in literature to generate test cases based on UML models and these
approaches have their own pros and cons. For the evaluation of these approaches, some
evaluation parameters including intermediate representation, coverage criteria, and
automation were identified in [19]. Coverage criteria are most commonly used parameter for
evaluation. Various path coverage criterion are used for evaluation of the testing approaches
such as message path coverage, activity coverage, path coverage, branch coverage and
transition coverage. In this work, we used path coverage. A path shows a sequence of nodes
from initial to leaf node while counting each node at least once. To calculate path coverage in
percentage, we used the following formula [15],

nodes covered in path
total no. of nodes in Model

 × 100%

3. Related Work
Techniques to generate test cases can be categorized as sequence based testing (SBT), model-
based testing (MBT) and coverage base testing (CBT) [9]. Mainly test suites are structured
from the source code [2]. The implementation phase started after the completion of the design
phase of SDLC. So it’s challenging to generate test cases during an earlier phase of the SDLC.
It is appropriate to generate test cases at early stages without time-consuming. The MB
approach is more systematic and effective than CB [2]. A review of literature outlines that MB
techniques are widely used because these techniques require less testing time and effort [7]. In
MB, test cases are generated from different system models like UML, DFD, GTS and ERD
etc. In literature, UML-based models are comprehensively used [7]. Many of existing studies
are in favor of using TCG from UML diagrams. Numerous studies have been proposed
approaches and methodologies for the TCG from UML models [3]-[6], [8], [20]-[21]. It has
been found that studies use individual models and combination of models for TCG.
In literature, it is also found that generation of test cases using individual diagrams has certain
problems. As reported in [12] that test cases based on SCD only deal with the testing of a
single object of the class. In the case of a complex system where multiple objects interact for
required system behavior, and existing technique is inadequate. Test cases generated from AD

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 3, March 2024 637

as reported in [5] [10] [22] do not give any state information. Therefore, the state of the object
remains unknown during the execution of test cases. A system behaves differently to same
input according to its state. So information of state and object interaction is necessary for the
effective TCG. Test cases generated from SD only address the interaction faults [15] [16]. To
overcome these issues researchers have proposed approaches based on combinational UML
models. Authors of a study [6] claim that by merging multiple UML model coverage of test
cases increased and helped to detect more faults.

Studies [3] [8] [21] [23] [24] [25] used combination of UML models such as AD and SD to
generate test cases. They transform UML models into an intermediate form known as a graph.
Then integrate both graphs to generate a combined graph. After the generation of combine
graph, they traverse it by using different traversing algorithms such as DFS and Breadth First
Search (BFS). Different UML models have distinct abilities to detect the various type of faults.
A research study [6] presented a technique to generate TC using combinational UML models
i.e. SCD and SD. They convert models into intermediate form graph then integrate both graphs
into single graph known as system testing graph. After that resultant graph traversed to identify
test sequence known as test cases.

A recent approach [26] is focused on combinational testing to generate TC. Authors in this
study used SD for generating combinatorial test cases. Once the information has been created,
the optimization algorithms are used to generate TC. As state-based testing has been known
as a challenging task in software testing, authors in [12] proposed an approach using various
coverage criteria derived from SCD. It has been observed from previous studies [27] that TC
are generated by minimizing time and cost. However, the challenge is to use such techniques
proposed from UML diagrams and consider the concurrent states for generating TC.

Artificial intelligence (AI) models, such as machine learning techniques (MLT), have been
widely used in the literature to perform complex tasks for improving software performance. A
recent study [28] reports the use of MLT for TC reduction and TC prioritization. These
techniques can be trained on data to learn the patterns and predict or decide about new data.
However, the present study is being undertaken to propose a TCG strategy based on multiple
diagrams, and recent advancements in AI cannot comprehend this task until sufficient data is
available to train the models.

4. Proposed Approach
In this study, we have proposed an approach to generate test cases using combinational UML
model i.e. SCD, AD and SD. There are four main steps in the proposed methodology. The first
step is to transform SCD, AD and SD into an intermediate form: State Chart Diagram Graph
(SCDG), Activity Diagram Graph (ADG) and Sequence Diagram Graph (SDG), respectively.
The second step is to merge the SCDG, ADG, and SDG to create a combined graph called
System Testing Graph (STG). In the third step, a traversal algorithm DFS method is used to
generate test paths by traversing STG. Finally, the optimized test paths are generated. In the
following section, we explain the proposed approach.

4.1 Transformation into Intermediate Form
The first part of the proposed methodology is the transformation of UML model into
intermediate representation i.e. SCD, AD, and SD into SCDG, ADG, and SDG, respectively.

638 Saleem et al.: A UML-based Approach towards
Test Case Generation and Optimization

4.1.1 Transformation of SCD into SCDG
In this part, we have clearly defined SCD and SCDG. After that, present a technique to
transform SCD into SCDG. An SCD designs the dynamic behavior of a class in response to
internal or external stimuli. Specifically, it describes the behavior of a single object in response
to multiple events.

4.1.2 Definition of SCDG
The SCDG was used by [6], [23] and [29] is defined in Eq. (1)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = � �𝑁𝑁
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

, �𝐸𝐸
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

, �𝐶𝐶
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

 , 𝑁𝑁𝑖𝑖 , 𝑁𝑁𝑓𝑓 �
 (1)

∑𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is the set of nodes in SCD in which an object behaves same in response to

stimuli, ∑𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is the set of all transitions shows that change from one node to another,
whereas, ∑𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is the set of conditions that enables the belonging transition to lead a
different transition. The initial node, 𝑁𝑁𝑖𝑖, shows the initial state of all objects while 𝑁𝑁𝑓𝑓 is the
final node that shows end of the object existence.

Next, we examine the transformation technique of SCD into SCDG. Each state in SCD
is mapped as a node and an edge from node 𝑁𝑁𝑖𝑖 to 𝑁𝑁𝑗𝑗 is used to show sequential dependency
of 𝑁𝑁𝑖𝑖 on 𝑁𝑁𝑗𝑗 . Fig. 1 shows the SCD for ATM card validation transaction and its corresponding
SCDG is represented in Fig. 2.

Fig. 1. State chart diagram for ATM

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 3, March 2024 639

Fig. 2. State chart diagram graph

4.1.3 Transformation of AD into ADG
After defining AD and ADG at the start of this part, we have discussed the approach to covert
AD into ADG. An AD is used to design flow-of-control from one activity to another activity.
An activity can be defined as the operation of the system.

4.1.4 Definition of ADG
The ADG was used by [6] and [21] is defined in Eq. (2)

𝐴𝐴𝐴𝐴𝐴𝐴 = � �𝑁𝑁
𝐴𝐴𝐴𝐴𝐴𝐴

, �𝐸𝐸
𝐴𝐴𝐴𝐴𝐴𝐴

, �𝐶𝐶
𝐴𝐴𝐴𝐴𝐴𝐴

 , 𝑁𝑁𝑖𝑖 , 𝑁𝑁𝑓𝑓 �
 (2)

 ∑𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴 is a set of all activity states, ∑𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴 is a set of all transitions between two
states and ∑𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴 is a set of all conditions, whereas, Ci is corresponding transition 𝐸𝐸𝑖𝑖 that
leads to the next transition. 𝑁𝑁𝑖𝑖 ∈ ∑𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴 represents the initial activity state while 𝑁𝑁𝑓𝑓 ∈
 ∑𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴 represents the final activity state.

Here, we explain the conversion of AD into ADG. Each activity in AD is mapped as
a node and an edge between two nodes shows the sequential dependency between them. Fig.
3 show the AD for card validation scenario of ATM and ADG as represented in Fig. 4.

640 Saleem et al.: A UML-based Approach towards
Test Case Generation and Optimization

Fig. 3. Activity diagram for ATM

Fig. 4. Activity diagram graph

4.1.5 Transformation of SD into SDG
After defining SD and SDG at the start of this part, we have discussed the approach to
transform SD into SDG. A sequence diagram is used to design interaction between two objects
and order of interaction.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 3, March 2024 641

4.1.6 Definition of SDG
The SDG was used by [6] and [23] is defined in Eq. (3)

𝑆𝑆𝑆𝑆𝑆𝑆 = � �𝑁𝑁
𝑆𝑆𝑆𝑆𝑆𝑆

, �𝐸𝐸
𝑆𝑆𝑆𝑆𝑆𝑆

 , 𝑁𝑁𝑖𝑖 , 𝑁𝑁𝑓𝑓 �

(3)

Where, ∑𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆 is the set of nodes showing numerous states in a scenario while
∑𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆 is the set of all edges showing transition between various states. 𝑁𝑁𝑖𝑖 is the initial node
expressing the first state, whereas, 𝑁𝑁𝑓𝑓 is final node which represent final state of an object.
In order to devise a method, we specify a scenario as follows:

𝑆𝑆𝑆𝑆𝑆𝑆 = < 𝑆𝑆𝑆𝑆𝑆𝑆 𝐼𝐼𝐼𝐼 ; 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ;𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ; 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈⁄ >
Where 𝑆𝑆𝑆𝑆𝑆𝑆 𝐼𝐼𝐼𝐼 (scenario identity) is an identity number used for each scenario,

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is the beginning point of each scenario or starting state of a scenario. Similarly,
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 represent all events that take place in a scenario while
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈⁄ is a state that conveys final output of a system. The success of
the system totally depends upon a user selection.
An event in a scenario can be defined as:

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = < 𝑚𝑚𝑚𝑚𝑚𝑚 𝐼𝐼𝐼𝐼 ;𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 ; 𝑡𝑡𝑡𝑡 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 ; [/𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶] >
Where 𝑚𝑚𝑚𝑚𝑚𝑚 𝐼𝐼𝐼𝐼 is a unique identity number which is assign to every message to represent

its identity, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 belongs to an object that has sent a message, 𝑡𝑡𝑡𝑡 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 represents
the object that receives a message. 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 represents the condition/s having concern to
an event occurrence. An event that has an iterative process specify through a steric (*).

Fig. 5 present the SD of ATM card validation, Fig. 6 shows the various scenarios in SD and
corresponding SDG as presented in Fig. 7.

Fig. 5. Sequence diagram for ATM

642 Saleem et al.: A UML-based Approach towards
Test Case Generation and Optimization

Fig. 6. Scenario Triplet

Fig. 7. Sequence diagram graph

4.2 Integrating SCDG, SDG, and SDG into STG
Subsequent to generating SCDG, ADG, and SDG, the three graphs are merged as presented in
Fig. 2, Fig. 4 and Fig. 7 into a system testing graph, which is a combined graph.

4.2.1 Definition of STG
The STG is defined in Eq. (4)

𝑆𝑆𝑆𝑆𝑆𝑆 = � �𝑁𝑁
𝑆𝑆𝑆𝑆𝑆𝑆

, �𝐸𝐸
𝑆𝑆𝑆𝑆𝑆𝑆

 , 𝑁𝑁𝑖𝑖 , 𝑁𝑁𝑓𝑓 �
(4)

 Where, ∑𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆 = � ∑𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 � ∪ � ∑𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴 � ∪ � ∑𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆 � is a set of all states of SCD,
AD and SD while, ∑𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆 is a set of all transition between different states of SCD, AD and
SD. 𝑁𝑁𝑖𝑖 is Starting node of SCDG whereas, the final set of nodes of STG is 𝑁𝑁𝑓𝑓 .
 For integration of three graphs as per definition of STG, we proposed an algorithm. Fig. 8
shows the STG after combining three graphs SCDG, ADG, and SDG. Detailed description of
merging graphs is explained in Algorithm 1.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 3, March 2024 643

Fig. 8. System testing graph

4.2.2 Algorithm
An algorithm is proposed from merging three graphs. It starts traversing from SCDG graph.
While traversing a graph whenever a conditional node occurs with the multiple paths, it draws
an edge from that node to next graph a flow such as; SCDG to ADG, ADG to SDG and SDG
to SCDG. It repeated till all vertices of three graphs are visited.

4.2.3 Algorithm 1: Generate STG
 Input: SCDG, ADG, and SDG.
 Output: STG.

1. 𝑃𝑃1 = 𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 // current node of SCDG.
2. 𝑃𝑃2 = 𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴 // current node of ADG.
3. 𝑃𝑃3 = 𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆 // current node of SDG.
4. 𝑀𝑀𝐺𝐺 = 𝑁𝑁𝑚𝑚 // current node of merged graph.
5. 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (𝑃𝑃1, 𝑃𝑃2, 𝑃𝑃3, 𝑀𝑀𝐺𝐺)

a. While 𝑷𝑷𝟏𝟏 ! null
i. If 𝑃𝑃1 ! child 𝑀𝑀𝐺𝐺

1. Add node in child of merged graph.
2. 𝑀𝑀𝐺𝐺 = 𝑃𝑃1

ii. End if
iii. If 𝑃𝑃1 ! conditional node

1. 𝑃𝑃1 = child of 𝑃𝑃1
2. Repeat step i

iv. Else
1. Break the loop

v. End if
b. End while.
c. While 𝑷𝑷𝟐𝟐 ! null

644 Saleem et al.: A UML-based Approach towards
Test Case Generation and Optimization

i. If 𝑃𝑃2 ! child 𝑀𝑀𝐺𝐺
1. Add node to the child of a merged graph.𝑀𝑀𝐺𝐺 = 𝑃𝑃2

ii. End if
iii. If 𝑃𝑃2 ! conditional node

1. 𝑃𝑃2 = child of 𝑃𝑃2
2. Repeat step i

iv. Else
1. Break the loop

v. End if
d. End while.
e. While 𝑷𝑷𝟑𝟑 ! null

i. If 𝑃𝑃3 ! child 𝑀𝑀𝐺𝐺
1. Add node to the child of a merged graph.
2. 𝑀𝑀𝐺𝐺 = 𝑃𝑃3

ii. End if
iii. If 𝑃𝑃3 ! conditional node

1. 𝑃𝑃3 = child of 𝑃𝑃3
2. Repeat step i

iv. Else
1. Break the loop

v. End if
f. End while.

6. End merge
7. If 𝑃𝑃1, 𝑃𝑃2 and 𝑃𝑃3 have conditional node

a. Repeat step 5 for each path.

4.3 Test Case Generation
In the third part of the proposed methodology, all paths of STG from start node to leaf node
are enumerated. Our approach traverses STG using traversal algorithm depth-first search (DFS)
method that guarantees all possible vertices are visited. All possible test paths STG are
depicted in Fig. 9.

Fig. 9. Lists of possible test paths

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 3, March 2024 645

 Each path of STG considers as a test case. TCG process is discussed in Algorithm 2.

4.3.1 Algorithm 2: Test Case Generation
 Input: STG
 Output: Test suit (T)

1. Detect all possible paths 𝑃𝑃 = { {𝑃𝑃1}, {𝑃𝑃2}, {𝑃𝑃3}, … … , {𝑃𝑃𝑛𝑛} }
//from starting node to leaf node in the STG

2. For every path 𝑃𝑃𝑖𝑖 ∈ 𝑃𝑃 do
a. 𝑁𝑁𝑗𝑗 = 𝑁𝑁𝑥𝑥 // current node; initialize with start node.
b. 𝑡𝑡𝑖𝑖 ← ∅ // for path 𝑃𝑃𝑖𝑖 initially test case is empty
c. Do

i. If 𝑁𝑁𝑗𝑗 = State node
1. Select T
2. t = {𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 , 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝}

ii. End if
iii. If 𝑁𝑁𝑗𝑗 = Activity node

1. t = {testing step}
iv. End if
v. If 𝑁𝑁𝑗𝑗 = Sequence node

1. t = {𝐼𝐼 (𝑎𝑎1,𝑎𝑎2,𝑎𝑎3, … ,𝑎𝑎𝑛𝑛) , 𝑂𝑂(𝑑𝑑1,𝑑𝑑2,𝑑𝑑3, … ,𝑑𝑑𝑚𝑚) }
where,
𝐼𝐼 (𝑎𝑎1,𝑎𝑎2,𝑎𝑎3, … ,𝑎𝑎𝑛𝑛) = set of all inputs for method m (…)
𝑂𝑂 (𝑑𝑑1,𝑑𝑑2,𝑑𝑑3, … ,𝑑𝑑𝑚𝑚) = set of all resultant values when m (…) is
executed.

vi. End if
vii. 𝑡𝑡𝑖𝑖 = 𝑡𝑡𝑖𝑖 ∪ 𝑡𝑡 // add t into test set.

viii. 𝑁𝑁𝑗𝑗 = 𝑁𝑁𝑘𝑘 // the next node of path 𝑃𝑃𝑖𝑖 .
ix. 𝑇𝑇 = 𝑇𝑇 ∪ 𝑡𝑡𝑖𝑖

d. While �𝑁𝑁𝑗𝑗 ≠ 𝑁𝑁𝑧𝑧� // 𝑁𝑁𝑧𝑧 is final node of path 𝑃𝑃𝑖𝑖 .
e. End while
f. Determine the final output, input, post C and pre-C of scenario.
g. 𝑡𝑡 = {𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 , 𝐼𝐼𝑖𝑖 , 𝑂𝑂𝑖𝑖 , 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖}
h. 𝑇𝑇 ← 𝑇𝑇 ∪ 𝑡𝑡

3. End for
4. Return (T)
5. Stop

 TCG algorithm starts from determining all possible paths in the STG. Steps 5 to 14
identify numerous pre-conditions, inputs, output and post condition for every path. Step 2 to
15 is repeated for all paths. And finally, step 16 gives us test cases.

4.4 Test Case Optimization
Test case optimization is important to reduce time and cost. It reduces the size of test case
without effecting quality factor. Those test cases are considered in the testing process, which
are appropriate to the specified coverage. An optimized concept is a selection of best test case
for test case execution. In optimization, test case reduction can be performed in two ways
either at the time of TCG or after the TCG [4]. In this research, test case reduction is done at

646 Saleem et al.: A UML-based Approach towards
Test Case Generation and Optimization

the time of TCG. We reduce all redundant test suites at the time of integrating graphs into
system testing graph. We also used a heuristic algorithm graph traversal DFS technique for
optimization. It traverses graph in depth and identifies maximum coverage path.

5. Experimental Result and Discussion
In this section, the results of our approach are compared with the existing proposed approach
to show that how effectively optimal test cases are generated with the maximum coverage. We
have to implement the methods proposed in [6], [23] on two examples i.e. ATM card
validation and library book issue to demonstrate results. In literature, most researchers
demonstrated their approach through the example of ATM card validation. It is a well-known
example to all; therefore, we also use it for the evaluation of our approach.

5.1 ATM Card Validation
The results of calculated path coverage of ATM card validation example are shown in Fig. 10
and Fig. 11.

Fig. 10. Comparative analysis of ATM card validation

0

10

20

30

40

50

60

70

80

P1 P2 P3 P4 P5

Pa
th

 C
ov

er
ag

e

Paths

N. khurana

A. Tripathy

Our Approach

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 3, March 2024 647

Fig. 11. Mean path coverage of ATM card validation

5.2 Library Book Issue
Calculated path coverage of Library book issue example is shown in Fig. 12 and Fig. 13.

Fig. 12. Comparative analysis of library book issue

A. Tripathy N. Khurrana
Our

Approach

Mean path coverage 39% 42% 63%

0%

10%

20%

30%

40%

50%

60%

70%

M
ea

n
Pa

th
 C

ov
er

ag
e

Approaches

Mean path coverage

0

10

20

30

40

50

60

70

80

P1 P2 P3 P4 P5 P6

P
at

h
 C

o
ve

ra
g
e

Paths

N. Khurana

A. Tripathy

Our Approach

648 Saleem et al.: A UML-based Approach towards
Test Case Generation and Optimization

Fig. 13. Mean path coverage of library book issue

The results depicted in Fig. 10, Fig. 11, Fig. 12 and Fig. 13 show that our approach is superior
in path coverage as compared to existing approaches. Through the comparative analysis
containing three approaches (two existing and one proposed in this research study) were
implanted by using above-mentioned examples to justify the proposed approach.
Meaningfully, the outcomes expose a significant improvement in path coverage with the
combination of an additional UML diagram in the perspective of ATM card validation. The
path coverage increased from 50% to 73%, while the mean coverage increased from 42% to
63% within the same case study. This considerable improvement underscores the efficiency
of our approach in enhancing the carefulness of testing scenarios.
For the second case of Library Book issue, our approach sustained to surpasses the existing
methods. The path coverage experienced a significant boost from 50% to an inspiring 75%.
Furthermore, the mean coverage in the library book issue case increased from 38% to 46%.
These results strengthen the superiority of our approach, representing its capacity to
consistently attain more broad coverage in various scenarios.
In brief, the comparative results explicitly support the claim that our approach is preferred
when compared with the existing methodologies. The combination of UML diagrams seems
to be a key contributing aspect, considerably enhancing both path and mean coverage in
various testing scenarios. These outcomes emphasize the potential impact of our approach on
improving the efficiency of path coverage in software testing.

6. Conclusion and Future Work
In this paper, we have proposed an approach to generate optimal test cases with the maximum
coverage. The proposed approach model-based enables us to generate test case. Three UML
diagrams i.e. SCD, AD and SD were used to generate test cases from the proposed model. The
proposed approach transformed UML diagrams into intermediate form by generating three
graphs. A system testing graph was generated by integrating these three graphs. This paper
used the depth first method to generate optimized test cases. By integrating three UML models,
it covers the maximum test cases. Moreover, test cases generated from the approach resolve a

A. Tripathy N. Khurrana
Our

Approach

Mean path coverage 26% 38% 46%

0%

10%

20%

30%

40%

50%

M
ea

n
 P

at
h
 C

o
ve

ra
g
e

Approaches

Mean path coverage

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 3, March 2024 649

problem like integration, scenario, pre-post and operational. To evaluate the proposed
approach we used two key cases such as “ATM card validation” and “library book issue”.
Results depict that the proposed approach has maximum coverage and optimal results. In
future works, we would formalize and verify the proposed approach on other cases to examine
its generalization in real world cases of software systems.

Acknowledgment
This research work was funded by Institutional Fund Projects under grant no. (IFPIP:378-
611-1443). The authors gratefully acknowledge technical and financial support provided by
the Ministry of Education and King Abdulaziz University, DSR, Jeddah, Saudi Arabia

References
[1] P. N. Boghdady, N. L. Badr, M. A. Hashim, and M. F. Tolba, “An enhanced test case generation

technique based on activity diagrams,” in Proc. of ICCES’2011 2011 Int. Conf. Comput. Eng. Syst.,
no. June, pp. 289–294, 2011. Article (CrossRef Link).

[2] O. Oluwagbemi and H. Asmuni, “An approach for automatic generation of test cases from UML
diagrams,” Int. J. Softw. Eng. its Appl., vol. 9, no. 8, pp. 87–106, 2015. Article (CrossRef Link).

[3] V. M. Sumalatha, G.S.V.P.Raju, “UML based Automated Test Case Generation technique using
Activity-Sequence diagram,” The International Journal of Computer Science & Applications
(TIJCSA), vol. 1, no. 9, pp. 58–71, 2012. Article (CrossRef Link)

[4] B. N. Biswal, “Test Case Generation and Optimization of Object-Oriented Software using UML
Behavioral Models,” 2010.

[5] A. Hettab, E. Kerkouche, and A. Chaoui, “A Graph Transformation Approach for Automatic Test
Cases Generation from UML Activity Diagrams,” in Proc. of the Eighth International C*
Conference on Computer Science & Software Engineering, pp. 88–97, 2015.
Article (CrossRef Link)

[6] N. Khurana and R. S. Chillar, “Test Case Generation and Optimization using UML Models and
Genetic Algorithm,” Procedia Comput. Sci., vol. 57, pp. 996–1004, 2015. Article (CrossRef Link)

[7] D. Arora and B. Hazela, “Testing And Verification of Software Model Through Formal Semantics :
A Systematic Review,” Int. J. Res. Eng. Technol., vol. 03, no. 10, pp. 78–82, 2014.

[8] M. Khandai, A. A. Acharya, and D. P. Mohapatra, “Test case generation for concurrent system
using UML combinational diagram,” Int. J. Comput. Sci. Inf. Technol. IJCSIT, vol. 2, no. 5, pp.
97–102, 2011.

[9] N. Khurana and R. S. Chillar, “Literature Review of Test Case Generation Techniques for Object
Oriented System,” Int. J. Comput. Appl., vol. 105, no. 15, 2014.

[10] A. K. Jena, S. K. Swain, and D. P. Mohapatra, “A novel approach for test case generation from
UML activity diagram,” in Proc. of Issues and Challenges in Intelligent Computing Techniques
(ICICT) International Conference on, pp. 621–629, 2014. Article (CrossRef Link)

[11] A. Hettab, A. Chaoui, and A. Aldahoud, “Automatic test cases generation from uml activity
diagrams using graph transformation,” in Proc. of The 6th International Conference on
Information Technology, vol. 8, pp. 1–12, 2013.

[12] Kaur and V. Vig, "Automatic test case generation through collaboration diagram: a case study,"
International Journal of System Assurance Engineering and Management, vol. 9, pp. 362-376,
2018. Article (CrossRef Link)

[13] S. Kansomkeat and W. Rivepiboon, “Automated-generating test case using UML statechart
diagrams,” in Proc. of the 2003 annual research conference of the South African institute of
computer scientists and information technologists on Enablement through technology, pp. 296–
300, 2003.

https://doi.org/10.1109/ICCES.2011.6141058
https://www.earticle.net/Article/A252751
https://doi.org/10.1016/j.procs.2017.10.029
https://doi.org/10.1145/2790798.2790801
https://doi.org/10.1016/j.procs.2015.07.502
https://doi.org/10.1109/ICICICT.2014.6781352
https://doi.org/10.1007/s13198-017-0675-8

650 Saleem et al.: A UML-based Approach towards
Test Case Generation and Optimization

[14] S. Kamonsantiroj, L. Pipanmaekaporn, and S. Lorpunmanee, "A memorization approach for test
case generation in concurrent UML activity diagram," in Proc. of the 2019 2nd International
Conference on Geoinformatics and Data Analysis, pp. 20-25, 2019. Article (CrossRef Link)

[15] N. K. Bahrin and R. Mohamad, “TCG algorithm approach for UML sequence diagram,” in Proc.
of 2015 9th Malaysian Software Engineering Conference (MySEC), pp. 43–48, 2015.
Article (CrossRef Link)

[16] Y. Seo, E. Y. Cheon, J.-A. Kim, and H. S. Kim, “Techniques to generate UTP-based test cases
from sequence diagrams using M2M (Model-to-Model) transformation,” in Proc. of 2016
IEEE/ACIS 15th Int. Conf. Comput. Inf. Sci., pp. 1–6, 2016. Article (CrossRef Link).

[17] A. A. Acharya, P. Mahali, and D. P. Mohapatra, “Automated Test Case Generation Using Uml
Use Case Diagram And Activity Diagram,” J. Theor. Appl. Inf. Technol., vol. 70, no. 3, pp. 399-
412, 2014. Article (CrossRef Link)

[18] A. Abdurazik, J. Offutt, and A. Baldini, “A controlled experimental evaluation of test cases
generated from UML diagrams,” 2004.

[19] M. Touseef, N. Anwer, A. Hussain, and A. Nadeem, “Testing from UML Design using Activity
Diagram: A Comparison of Techniques,” Int. J. Comput. Appl., vol. 131, no. 5, pp. 41–47, 2015.
Article (CrossRef Link)

[20] M. Khandai, A. A. Acharya, and D. P. Mohapatra, “Test case generation for concurrent system
using UML combinational diagram,” Int. J. Comput. Sci. Inf. Technol. vol. 2, 2011.

[21] S. K. Swain and D. P. Mohapatra, “Test case generation from Behavioral UML Models,” Int. J.
Comput. Appl., vol. 6, no. 8, pp. 5–11, 2010. Article (CrossRef Link)

[22] D. Kundu and D. Samanta, “A Novel Approach to Generate Test Cases from UML Activity
Diagrams,” J. Object Technol., vol. 8, no. 3, pp. 65–83, 2009. Article (CrossRef Link)

[23] A. Tripathy and A. Mitra, “Test case generation using activity diagram and sequence diagram,” in
Proc. of Int. Conf. Adv. Comput. ICAdC 2012, pp. 121–129, 2013. Article (CrossRef Link).

[24] S. Dalai, A. A. Acharya, and D. P. Mohapatra, “Test Case Generation For Concurrent Object-
Oriented Systems Using Combinational Uml Models,” International Journal of Advanced
Computer Science and Applications, vol. 3, no. 5, 2011. Article (CrossRef Link)

[25] R. Gupta and V. Jaglan, “Test case generation for UML behavioral diagram by traversal algorithm,”
Int. J. Innov. Technol. Explor. Eng., vol. 8, no. 10, pp. 3262–3266, Aug. 2019.
Article (CrossRef Link).

[26] S. Tatale and V. C. Prakash, "Automatic Generation and Optimization of Combinatorial Test Cases
from UML Activity Diagram Using Particle Swarm Optimization," Ingénierie des Systèmes
d'Information, vol. 27, no. 1, pp. 49-59, 2022. Article (CrossRef Link)

[27] S. Pradhan, M. Ray, and S. K. Swain, "Transition coverage based test case generation from state
chart diagram," Journal of King Saud University-Computer and Information Sciences, vol. 34, no.
3, pp. 993-1002, 2022. Article (CrossRef Link)

[28] A. Singh, "Taxonomy of Machine Learning Techniques in Test Case Generation," in Proc. of 2023
7th International Conference on Intelligent Computing and Control Systems (ICICCS), pp. 474-
481, 2023. Article (CrossRef Link)

[29] Y. D. Salman, N. L. Hashim, M. M. Rejab, R. Romli, and H. Mohd, “Coverage criteria for test
case generation using UML state chart diagram,” in Proc. of AIP Conference Proceedings, vol.
1891, 2017. Article (CrossRef Link).

https://doi.org/10.1145/3318236.3318256
https://doi.org/10.1109/MySEC.2015.7475193
http://doi.org/10.1109/ICIS.2016.7550832
https://www.jatit.org/volumes/Vol70No3/5Vol70No3.pdf
https://doi.org/10.5120/ijca2015907354
https://www.researchgate.net/profile/Durga-Mohapatra-3/publication/46280062_Test_Case_Generation_from_Behavioral_UML_Models/links/5541dff40cf23222273175f2/Test-Case-Generation-from-Behavioral-UML-Models.pdf
https://doi.org/10.1109/ICICICT.2014.6781352
https://doi.org/10.1007/978-81-322-0740-5_16
https://doi.org/10.14569/IJACSA.2012.030515
https://doi.org/10.35940/ijitee.J1190.0881019
https://doi.org/10.18280/isi.270106
https://doi.org/10.1016/j.jksuci.2019.05.005
https://doi.org/10.1109/ICICCS56967.2023.10142518
https://doi.org/10.1063/1.5005458

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 3, March 2024 651

SHAHID SALEEM is a lecturer at Lahore Leads University, Lahore. He earned his
MSSE degree from COMSATS University Islamabad in 2017. With a keen interest in
software testing and artificial intelligence, Shahid is dedicated to advancing research in these
areas. He has contributed to various publications and projects, focusing on innovative
solutions to real-world software engineering challenges.

SAIF U. R. MALIK is currently working as a Senior Researcher at Cybernetica AS,
Estonia. He did his Ph. D. from North Dakota State University, USA in 2014. Previously, he
has worked as an Assistant Professor at COMSATS University Islamabad Pakistan. Dr. Saif
research interest includes Formal Methods and its application in and Large-Scale Computing
Systems, Distributed Computing Systems, Fault-tolerance in Communication Networks,
Data Centers, and Formal Analysis of Security and Privacy of Data.

BILAL MEHBOOB received the PhD degree from Monash University in Software
Engineering and the M.S. degree in software engineering from the National University of
Science and Technology (NUST), Pakistan. He is currently working as assistant professor in
Superior University, Pakistan. His current research interests include Software engineering,
Machine learning, Data mining, AI, Blockchain and Cybersecurity.

ROOBAEA ALROOBAEA received the bachelor’s degree (Hons.) in computer science
from King Abdulaziz University (KAU), Saudi Arabia, in 2008, and the master’s degree in
information system and the Ph.D. degree in computer science from the University of East
Anglia, U.K., in 2012 and 2016, respectively. He is currently a Professor with the College
of Computers and Information Technology, Taif University, Saudi Arabia. His research
interests include human computer interaction, cloud computing, and machine learning.

SULTAN ALGARNI received the bachelor’s degree (Hons.) in computer science from
King Abdulaziz University (KAU), Saudi Arabia, in 2008, and the master’s degree in
information technology from University of New South Wales (UNSW), Australia, in 2014
and the Ph.D. degree in computer science from King Abdulaziz University (KAU), Saudi
Arabia, in 2022. He is currently an assistant professor with the Faculty of Computing and
Information Technology, King Abdulaziz University, Saudi Arabia. His research interests
include information security, networking, IoT, SDN, and artificial intelligence.

ABDULLAH M. BAQASAH received the bachelor’s degree in computer science from
King Abdulaziz University (KAU), Saudi Arabia, in 2003, and the master’s degree in
information technology and the Ph.D. degree in computer science from La Trobe University,
Australia, in 2009 and 2015, respectively. He is currently an Assistant Professor with the
College of Computers and Information Technology, Taif University, Saudi Arabia. His
research interests include semantic web, software engineering, the Internet of Things, cloud
computing, artificial intelligence, and machine learning.

652 Saleem et al.: A UML-based Approach towards
Test Case Generation and Optimization

NAVEED AHMAD is a seasoned academic and R&D consultant specializing in BPM
(Business Process Management), AI, NLP (Natural Language Processing), and Audio
Analytics. Currently serving as Professor and Head of the Software Engineering Department
at FAST-NU, he plays a crucial role in driving research and academic excellence in these
domains. Ahmad holds a Ph.D. in process management from the University of Cambridge,
where his research focused on software engineering, particularly process management and
simulation. Throughout his academic journey, he has conducted extensive studies and
utilized advanced techniques to tackle complex problems.

MUHAMMAD HASNAIN holds PhD from Monash University Australia. He is
currently working as head of the computer science department Lahore Leads University,
Pakistan. He is playing a crucial role to excel the students in research work. He has published
several research articles in the area of Software testing, artificial intelligence, blockchain.
Currently he is highly involved in the research on large language models (LLMs) and their
applications in healthcare.

