DOI QR코드

DOI QR Code

표준담배추출물과 Lipopolysaccharide로 유발한 만성폐쇄성폐질환 동물모델에서 쌍화탕의 폐손상 및 근감소 억제 효과

Inhibitory Effects of Ssanghwa-tang on Lung Injury and Muscle Loss in a Cigarette Smoke Extract and Lipopolysaccharide-induced Chronic Obstructive Pulmonary Disease Mouse Model

  • 최진관 (대전대학교 한의과대학 폐계내과학교실) ;
  • 양원경 (대전대학교 한의과대학 폐계내과학교실) ;
  • 이수원 (대전대학교 한의과대학 폐계내과학교실) ;
  • 우성천 (대전대학교 한의과대학 폐계내과학교실) ;
  • 김승형 (대전대학교 동서생명과학연구원) ;
  • 박양춘 (대전대학교 한의과대학 폐계내과학교실)
  • Jin-kwan Choi (Division of Respiratory Medicine, Dept. of Internal Medicine, College of Korean Medicine, Daejeon University) ;
  • Won-kyung Yang (Division of Respiratory Medicine, Dept. of Internal Medicine, College of Korean Medicine, Daejeon University) ;
  • Su-won Lee (Division of Respiratory Medicine, Dept. of Internal Medicine, College of Korean Medicine, Daejeon University) ;
  • Seong-cheon Woo (Division of Respiratory Medicine, Dept. of Internal Medicine, College of Korean Medicine, Daejeon University) ;
  • Seung-hyung Kim (Institute of Bioscience and Integrative Medicine, Daejeon University) ;
  • Yang-chun Park (Division of Respiratory Medicine, Dept. of Internal Medicine, College of Korean Medicine, Daejeon University)
  • 투고 : 2024.02.26
  • 심사 : 2024.04.02
  • 발행 : 2024.03.30

초록

Objectives: This study evaluated the effects of Ssanghwa-tang (SHT) on lung injury and muscle loss in a COPD mouse model. Methods: C57BL/6 mice were challenged with cigarette smoke extract and lipopolysaccharide, and then treated with two concentrations of SHT (250 and 500 mg/kg). After sacrifice, the bronchoalveolar lavage fluid (BALF) or lung tissue was analyzed by cytospin, ELISA, real-time PCR, flow cytometry analysis, and H&E and Masson's trichrome staining. The grip strength of COPD mice was measured using a grip strength meter. The running time of COPD mice was measured by a treadmill test. Muscle tissue of the quadriceps was stained with H&E and Masson's trichrome staining. Results: SHT significantly inhibited the increase in neutrophil numbers in BALF and significantly decreased immune cell activity in BALF and lung tissue. It also significantly inhibited the increase in TNF-α, IL-17, and MIP2 in BALF. Real-time PCR analysis revealed that the mRNA expression of TNF-α, IL-17, MIP2, and TRPV1 in lung tissue showed a significant decrease compared with the control group. Lung tissue damage was significantly reduced in the histological analysis. The grip strength and running time of the COPD mice showed a significant decrease compared with the control group. In histological staining, SHT was found to reduce the damage to muscle tissue. Conclusions: This study indicates that SHT can be used as a therapeutic agent for COPD patients by inhibiting lung injury and muscle loss.

키워드

과제정보

이 논문은 2023학년도 대전대학교 교내학술연구비 지원에 의해 연구되었음.

참고문헌

  1. Park YB, Rhee CK, Yoon HK, Oh YM, Lim SY, Lee JH, et al. Revised (2018) COPD clinical practice guideline of the Korean Academy of Tuberculosis and Respiratory Disease: a summary. Tuberc Respir Dis 2018;81(4):261-73.  https://doi.org/10.4046/trd.2018.0029
  2. O'Donnell DE, Laveneziana P. Dyspnea and activity limitation in COPD: mechanical factors. COPD 2007;4(3):225-36.  https://doi.org/10.1080/15412550701480455
  3. Wagner PD. Possible mechanisms underlying the development of cachexia in COPD. Eur Respir J 2008;31(3):492-501.  https://doi.org/10.1183/09031936.00074807
  4. Richardson RS, Sheldon J, Poole DC, Hopkins SR, Ries AL, Wagner PD. Evidence of skeletal muscle metabolic reserve during whole body exercise in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1999;159(3):881-5.  https://doi.org/10.1164/ajrccm.159.3.9803049
  5. Casaburi R. Skeletal muscle dysfunction in chronic obstructive pulmonary disease. Med Sci Sports Exerc 2001;33(7 Suppl):S662-70.  https://doi.org/10.1097/00005768-200107001-00004
  6. Lee BJ, Jung HJ, Choi JY, Kang W, Jung SK. Preliminary Study to Develop a Korean Oriental Medical Assessment Tool for Syndrome Differentiation of Chronic Obstructive Pulmonary Disease. J Korean Oriental Med 2012;33(3):82-94. 
  7. Lee JG, Yang SY, Kim MH, Namgung U, Park YC. Protective effects of Socheongryong-tang on elastase-induced lung injury. J Korean Oriental Med 2011;32(4):83-99. 
  8. Yang WK, Lyu YR, Kim SH, Park YC. Effects of GHX02 on Chronic Obstructive Pulmonary Disease Mouse Model. J Korean Oriental Med 2018;39(4):126-35.  https://doi.org/10.13048/jkm.18040
  9. Park JJ, Yang WK, Lyu YR, Kim SH, Park YC. Inhibitory effects of SGX01 on lung injury of COPD mice model. Korean J Int Korean Med 2019;40(4):567-81.  https://doi.org/10.22246/jikm.2019.40.4.567
  10. Kim TH, Yang WK, Lee SW, Kim SH, Lyu YR, Park YC. Inhibitory effects of GGX on lung injury of chronic obstructive pulmonary Disease mice model. J Korean Med 2021;42(3):56-71.  https://doi.org/10.13048/jkm.21025
  11. Lee H, Kim Y, Kim HJ, Park S, Jang YP, Jung S, et al. Herbal Formula, PM014, Attenuates Lung Inflammation in a Murine Model of Chronic Obstructive Pulmonary Disease. Evid Based Complement Alternat Med 2012;2012:769830. 
  12. Huh J. Donguibogam. Seoul: Namsandang; 1998, p. 447. 
  13. Nam DJ, Oh MS. Review about the study of Ssanghwa-tang published in Korea from 2000 to 2019. J Haehwa Med 2019;28(2):12-9. 
  14. Park WK, Park SD. Effects of Ssanghwa-tang on the Antifatigue Action and Brain Levels of Norepinephrine, Serotonin, 5-hydroxyindole-acetic acid and Dopamine. J Jeahan Oriental Med Academy 1995;1(1):130-45. 
  15. Jung D, Ha H, Lee HY, Lee JA, Lee JK, Huang DS, et al. Stimulation of the immune response by Yin-tonifying formula. J Korean Oriental Med 2010;31(5):112-23. 
  16. Jung HJ, Lee JP, Choi YJ, Ahn KS, Oh JK. Effects of one bout administration of oriental herbal drink on aerobic capacity and physiological valuables in elite long-distance runners. J Oriental Rehab Med 2007;17(3):161-77. 
  17. Choi JY, Lim B, Shin HK, Kim K. Randomized, double-blind, and placebo-controlled a clinical study for chronic fatigue via the analysis of efficacy and safety of Gongjin-dan and Ssanghwa-tang: study protocol. J Soc of Prev Korean Med 2022;26(3):97-108. 
  18. Tanaka H, Masuda T, Tokuoka S, Komai M, Nagao K, Takahashi Y, et al. The effect of allergen-induced airway inflammation on airway remodeling in a murine model of allergic asthma. Inflamm Res 2001;50(12):616-24.  https://doi.org/10.1007/PL00000243
  19. Hah YS, Cho KH, Kim EJ, Son YH, Lee JH, Lee DY, et al. Anti-atrophic effect of green tea extracts from different extraction processes on dexamethasone-induced atrophy in cellular and mouse model. J Kor Tea Soc 2020;26(1):40-50. 
  20. Dougherty JP, Springer DA, Gershengorn MC. The treadmill fatigue test: a simple, high-throughput assay of fatigue-like behavior for the mouse. J Vis Exp 2016;(111):e54052. 
  21. Lopez AD, Shibuya K, Rao C, Mathers CD, Hansell AL, Held LS, et al. Chronic obstructive pulmonary disease: current burden and future projections. Eur Rspir J 2006;27(2):397-412.  https://doi.org/10.1183/09031936.06.00025805
  22. Adeloye D, Song P, Zhu Y, Campbell H, Sheikh A, Rudan I. NIHR RESPIRE Global Respiratory Health Unit. Global, regional, and national prevalence of, and risk factors for, chronic obstructive pulmonary disease (COPD) in 2019: a systematic review and modelling analysis. Lancet Respir Med 2022;10(5):447-58.  https://doi.org/10.1016/S2213-2600(21)00511-7
  23. Kim SH, Lee H, Kim Y, Rhee CK, Kin KH, Hwang YI, et al. Recent Prevalence of and Factors Associated With Chronic Obstructive Pulmonary Disease in a Rapidly Aging Society: Korea National Health and Nutrition Examination Survey 2015-2019. J Korean Med Sci 2023;10;38(14):e108. 
  24. Hogg JC. Pathophysiology of airflow limitation in chronic obstructive pulmonary disease. Lancet 2004;364(9435):709-21.  https://doi.org/10.1016/S0140-6736(04)16900-6
  25. Barnes PJ. Cellular and molecular mechanisms of asthma and COPD. Clin Sci (Lond) 2017;131(13):1541-58.  https://doi.org/10.1042/CS20160487
  26. Abboud RT, Vimalanathan S. Pathogenesis of COPD. Part I. The role of protease-antiprotease imbalance in emphysema. Int J Tuberc Lung Dis 2008;12(4):361-7. 
  27. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyere O, Cederholm T, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 2019;48(4):601. 
  28. Sepulveda-Loyola W, Osadnik C, Phu S, Morita AA, Duque G, Probst VS. Diagnosis, prevalence, and clinical impact of sarcopenia in COPD: a systematic review and meta-analysis. J Cachexia Sarcopenia Muscle 2020;11(5):1164-76.  https://doi.org/10.1002/jcsm.12600
  29. Jones SE, Maddocks M, Kon SS, Canavan JL, Nolan CM, Clark AL, et al. Sarcopenia in COPD: prevalence, clinical correlates and response to pulmonary rehabilitation. Thorax 2015;70(3):213-8.  https://doi.org/10.1136/thoraxjnl-2014-206440
  30. Jaitovich A, Barreiro E. Skeletal Muscle Dysfunction in Chronic Obstructive Pulmonary Disease. What We Know and Can Do for Our Patients. Am J Respir Crit Care Med 2018;198(2):175-86.  https://doi.org/10.1164/rccm.201710-2140CI
  31. Tanimura K, Sato S, Fuseya Y, Hasegawa K, Uemasu K, Sato A, et al. Quantitative Assessment of Erector Spinae Muscles in Patients With Chronic Obstructive Pulmonary Disease. Novel Chest Computed Tomography-Derived Index for Prognosis. Ann Am Thorac Soc 2016;13(3):334-41.  https://doi.org/10.1513/AnnalsATS.201507-446OC
  32. Yum JY, Eun JS. Effects of Samultang on immune function during the late stage of pregnancy in Balb/c mice. Korea J Pharmacogn 2000;31(2):142-8. 
  33. Lee SY, Lee H, Go EJ, Park Y, Choi SK, Yu CY, et al. Effect of Astragalus membranaceus Polysaccharides on improves immune response after exhaustive exercise rats. Korean J Medicinal Crop Sci 2018;26(1):72-81.  https://doi.org/10.7783/KJMCS.2018.26.1.72
  34. Kamei J, Nakamura R, Ichiki H, Kubo M. Antitussive principles of Glycyrrhizae radix, a main component of the Kampo preparations Bakumondo-to (Mai-men-dong-tang). Eur J Pharmacol 2003;469(1-3):159-63.  https://doi.org/10.1016/S0014-2999(03)01728-X
  35. Kim SH, Hong JH, Lee JE, Lee YC. 18β-Glycyrrhetinic acid, the major bioactive component of Glycyrrhizae Radix, attenuates airway inflammation by modulating Th2 cytokines, GATA-3, STAT6, and Foxp3 transcription factors in an asthmatic mouse model. Environ Toxicol Pharmacol 2017;52:99-113.  https://doi.org/10.1016/j.etap.2017.03.011
  36. Ko HM, Lee SH, Jee W, Jung JH, Kim KI, Jung HJ, et al. Gancaonin N from Glycyrrhiza uralensis Attenuates the Inflammatory Response by Downregulating the NF-κB/MAPK Pathway on an Acute Pneumonia In Vitro Model. Pharmaceutics 2021;13(7):1028. 
  37. Khan AM, Shahzad M, Raza Asim MB, Imran M, Shabbir A. Zingiber officinale ameliorates allergic asthma via suppression of Th2-mediated immune response. Pharm Biol 2015;53(3):359-67.  https://doi.org/10.3109/13880209.2014.920396
  38. Kim SA, Kim HY, Lee JY, Yang CH, Roh SS. The study on chemical components and oriental medicinal effects onf Jujuba Fructus. J East-West Med 2012;37(3):1-11. 
  39. Percopo CM, Brenner TA, Ma M, Kraemer LS, Hakeem RMA, Lee JJ, et al. SiglecF+Gr1hi eosinophils are a distinct subpopulation within the lungs of allergen-challenged mice. J Leukoc Biol 2017;101(1):321-8.  https://doi.org/10.1189/jlb.3A0416-166R
  40. Angata T, Hingorani R, Varki NM, Varki A. Cloning and characterization of a novel mouse Siglec, mSiglec-F: differential evolution of the mouse and human (CD33) Siglec-3-related gene clusters. J Biol Chem 2001;276(48):45128-36.  https://doi.org/10.1074/jbc.M108573200
  41. Spoelstra FM, Hovenga H, Noordhoek JA, Postma DS, Kauffman HF. Changes in CD11b and L-selectin expression on eosinophils are mediated by human lung fibroblasts in vitro. Am J Respir Crit Care Med 1998;158(3):769-77.  https://doi.org/10.1164/ajrccm.158.3.9712143
  42. Lokwani R, Wark PA, Baines KJ, Fricker M, Barker D, Simpson JL. Blood Neutrophils In COPD But Not Asthma Exhibit A Primed Phenotype With Downregulated CD62L Expression. Int J Chron Obstruct Pulmon Dis 2019;14:2517-25.  https://doi.org/10.2147/COPD.S222486
  43. DeGrendele HC, Estess P, Siegelman MH. Requirement for CD44 in activated T cell extravasation into an inflammatory site. Science 1997;24(278):672-5.  https://doi.org/10.1126/science.278.5338.672
  44. Deveci Y, Deveci F, Ilhan N, Karaca I, Turgut T, Muz MH. Serum ghrelin, IL-6 and TNF-α levels in patients with chronic obstructive pulmonary disease. Tuberk Toraks 2010;58(2):162-72. 
  45. Barnes PJ. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol 2016;138(1):16-27.  https://doi.org/10.1016/j.jaci.2016.05.011
  46. Freeman CM, Han MK, Martinez FJ, Murray S, Liu LX, Chensue SW, et al. Cytotoxic potential of lung CD8+ T cells increases with chronic obstructive pulmonary disease severity and with in vitro stimulation by IL-18 or IL-15. J Immunol 2010;184(11):6504-13.  https://doi.org/10.4049/jimmunol.1000006
  47. Aaron SD, Angel JB, Lunau M, Wright K, Fex C, Le Saux N, et al. Granulocyte inflammatory markers and airway infection during acute exacerbation of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2001;163(2):349-55.  https://doi.org/10.1164/ajrccm.163.2.2003122
  48. Traves SL, Donnelly LE. Th17 cells in airway diseases. Curr Mol Med 2008;8(5):416-26.  https://doi.org/10.2174/156652408785160998
  49. Levanen B, Glader P, Dahlen B, Billing B, Qvarfordt I, Palmberg L, et al. Impact of tobacco smoking on cytokine signaling via interleukin-17A in the peripheral airways. Int J Chron Obstruct Pulmon Dis 2016;11:2109-16.  https://doi.org/10.2147/COPD.S99900
  50. Henrot P, Prevel R, Berger P, Dupin I. Chemokines in COPD: From Implication to Therapeutic Use. Int J Mol Sci 2019;20(11):2785. 
  51. Chung KF, Pavord ID. Prevalence, pathogenesis, and causes of chronic cough. Lancet 2008;371(9621):1364-74.  https://doi.org/10.1016/S0140-6736(08)60595-4
  52. Baraldo S, Turato G, Saetta M. Pathophysiology of the small airways in chronic obstructive pulmonary disease. Respiration 2012;84(2):89-97.  https://doi.org/10.1159/000341382
  53. Maltais F, Decramer M, Casaburi R, Barreiro E, Burelle Y, Debigare R, et al. An official American Thoracic Society/European Respiratory Society statement: update on limb muscle dysfunction in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2014;189(9):e15-62.  https://doi.org/10.1164/rccm.201402-0373ST
  54. Ma K, Huang F, Qiao R, Miao L. Pathogenesis of sarcopenia in chronic obstructive pulmonary disease. Front Physiol 2022;13:850964. 
  55. Byun MK, Cho EN, Chang J, Ahn CM, Kim HJ. Sarcopenia correlates with systemic inflammation in COPD. Int J Chron Obstruct Pulmon Dis 2017;12:669-75. https://doi.org/10.2147/COPD.S130790