DOI QR코드

DOI QR Code

막 기반 직접공기포집: 총설

Membrane-Based Direct Air Capture: A Review

  • 양성백 (경상국립대학교 그린에너지융합연구소) ;
  • 임광섭 (경상국립대학교 나노.신소재융합공학과) ;
  • 니키타 쿠마리 (경상국립대학교 그린에너지융합연구소) ;
  • 남상용 (경상국립대학교 그린에너지융합연구소)
  • Seong Baek Yang (Research Institute for Green Energy Convergence Technology, Gyeongsang National University) ;
  • Kwang-Seop Im (Department of Materials Science and Convergence Technology, Gyeongsang National University) ;
  • Km Nikita (Research Institute for Green Energy Convergence Technology, Gyeongsang National University) ;
  • Sang Yong Nam (Research Institute for Green Energy Convergence Technology, Gyeongsang National University)
  • 투고 : 2024.02.28
  • 심사 : 2024.03.24
  • 발행 : 2024.04.10

초록

직접공기포집 기술은 기후 변화 완화에서 중요한 역할을 하고 있다. 국제에너지기구와 기후변화에 관한 보고서에서는 이러한 중요성을 강조하고 있고, 탄소의 지속적인 배출에도 불구하고 이를 감소시킴으로써 지구 온난화를 1.5 ℃로 제한하는 것을 목표로 한다. 직접공기포집 기술은 초기 비용에도 불구하고 연구 및 개발, 운영 학습 및 규모의 경제를 통한 비용 절감의 가능성을 보여주고 있다. 최근 고투과도를 갖춘 고분자 막의 발전은 막 기반 직접공기포집 기술에 대한 잠재력을 제시하고 있으나, 효과적인 대기 중 CO2 분리를 위해서는 CO2에 대한 높은 선택성과 투과성을 갖춘 막을 필요로 한다. 현재 연구는 막 최적화 연구를 다수의 연구팀에 의하여 연구되고 있으며, CO2 포집 효율을 향상시키는 데 중점을 두고 있다. 본 연구에서는 직접공기포집의 중요성, 발전 중인 비용 동향 및 기후 변화 완화에 있어서 막의 발전이 중요한 역할을 강조하고 있고, 덧붙여서 이 연구에서는 막 기반 DAC에서의 permeance와 selectivity의 이론적 배경, 조건, 구성, 장단점에 대해 알아보았다.

Direct air capture (DAC) technology plays a crucial role in mitigating climate change. Reports from the International Energy Agency and climate change emphasize its significance, aiming to limit global warming to 1.5 ℃ despite continuous carbon emissions. Despite initial costs, DAC technology demonstrates potential for cost reductions through research and development, operational learning, and economies of scale. Recent advancements in high-permeance polymer membranes indicate the potential of membrane-based DAC technology. However, effective separation of CO2 from ambient air requires membranes with high selectivity and permeability to CO2. Current research is focusing on membrane optimization to enhance CO2 capture efficiency. This study underscores the importance of direct air capture, evolving cost trends, and the pivotal role of membrane development in climate change mitigation efforts. Additionally, this research delved into the theoretical background, conditions, composition, advantages, and disadvantages of permeance and selectivity in membrane-based DAC.

키워드

과제정보

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1A6A1A03038697).

참고문헌

  1. F. Bisotti, K.A. Hoff, A. Mathisen, and J. Hovland, Direct Air capture (DAC) deployment: A review of the industrial deployment, Chem. Eng. Sci., 283, 119416 (2024). 
  2. Y. Ou, G. Iyer, L. Clarke, J. Edmonds, A.A. Fawcett, N. Hultman, J.R. Mcfarland, M. Binsted, R. Cui, and C. Fyson, Can updated climate pledges limit warming well below 2℃?, Science, 374, 693-695 (2021).  https://doi.org/10.1126/science.abl8976
  3. B. K. Sovacool, C. M. Baum, S. Low, C. Roberts, and J. Steinhauser, Climate policy for a net-zero future: Ten recommendations for Direct Air Capture, Environ. Res. Lett., 17, 074014 (2022). 
  4. J. Klankermayer, S. Wesselbaum, K. Beydoun, and W. Leitner, Selective catalytic synthesis using the combination of carbon dioxide and hydrogen: catalytic chess at the interface of energy and chemistry, Angew. Chem.-Int. Ed., 55, 7296-7343 (2016).  https://doi.org/10.1002/anie.201507458
  5. P. Zhao, G. Zhang, H. Yan, and Y. Zhao, The latest development on amine functionalized solid adsorbents for post-combustion CO2 capture: Analysis review, Chin. J. Chem. Eng., 35, 17-43 (2021).  https://doi.org/10.1016/j.cjche.2020.11.028
  6. S. Fujikawa, R. Selyanchyn, T. Kunitake, A new strategy for membrane-based direct air capture, Polym. J. 53, 111-119 (2021).  https://doi.org/10.1038/s41428-020-00429-z
  7. W.C. Wilfong, T. Ji, Z. Bao, H. Zhai, Q. Wang, Y. Duan, Y. Soong, B. Li, F. Shi, and M.L. Gray, Big data analysis and technical review of regeneration for carbon capture processes, Energy Fuels, 37, 11497-11531 (2023). 
  8. S. Wang, X. Li, H. Wu, Z. Tian, Q. Xin, G. He, D. Peng, S. Chen, Y. Yin, and Z. Jiang, Advances in high permeability polymer-based membrane materials for CO2 separations, Energy Environ. Sci., 9, 1863-1890 (2016). 
  9. A. Brunetti, F. Scura, G. Barbieri, and E. Drioli, Membrane technologies for CO2 separation, J. Membr. Sci., 359, 115-125 (2010).  https://doi.org/10.1016/j.memsci.2009.11.040
  10. M. Pasichnyk, P. Stanovsky, P. Polezhaev, B. Zach, M. Syc, M. Bobak, J. C. Jansen, M. Pribyl, J. E. Bara, and K. Friess, Membrane technology for challenging separations: Removal of CO2, SO2 and NOx from flue and waste gases, Sep. Purif. Technol., 323, 124436 (2023). 
  11. X. He and M.-B. Hagg, Membranes for environmentally friendly energy processes, Membranes, 2, 706-726 (2012).  https://doi.org/10.3390/membranes2040706
  12. R. Castro-Munoz, M. Z. Ahmad, M. Malankowska, and J. Coronas, A new relevant membrane application: CO2 direct air capture (DAC), Chem. Eng. Sci., 446, 137047 (2022).
  13. B. Belaissaoui, E. Lasseuguette, S. Janakiram, L. Deng, and M.-C. Ferrari, Analysis of CO2 facilitation transport effect through a hybrid poly(allyl amine) membrane: Pathways for further improvement, Membranes, 10, 367 (2020). 
  14. R. Selyanchyn and S. Fujikawa, Membrane thinning for efficient CO2 capture, Sci. Technol. Adv. Mater., 18, 816-827 (2017)  https://doi.org/10.1080/14686996.2017.1386531
  15. K. Xie, Q. Fu, G. G. Qiao, and P. A. Webley, Recent progress on fabrication methods of polymeric thin film gas separation membranes for CO2 capture, J. Membr. Sci., 572, 38-60 (2019).  https://doi.org/10.1016/j.memsci.2018.10.049
  16. Y. Chen, L. Zhao, B. Wang, P. Dutta, and W. W. Ho, Amine-containing polymer/zeolite Y composite membranes for CO2/N2 separation, J. Membr. Sci, 497, 21-28 (2016).  https://doi.org/10.1016/j.memsci.2015.09.036
  17. T.C. Merkel, H. Lin, X. Wei, and R. Baker, Power plant post-combustion carbon dioxide capture: An opportunity for membranes, J. Membr. Sci., 359, 126-139 (2010).  https://doi.org/10.1016/j.memsci.2009.10.041
  18. C. Castel, R. Bounaceur, and E. Favre, Membrane processes for direct carbon dioxide capture from air: Possibilities and limitations, Front. Chem. Eng., 3, 668867 (2021). 
  19. Y.-Y. Lee and B. Gurkan, Graphene oxide reinforced facilitated transport membrane with poly(ionic liquid) and ionic liquid carriers for CO2/N2 separation, J. Membr. Sci., 638, 119652 (2021). 
  20. J. Wu, F. Hillman, C.-Z. Liang, Y. Jia, and S. Zhang, Progressing thin-film membrane designs for post-combustion CO2 capture: Performance or practicality?, J. Mater. Chem. A, 11, 17452-17478 (2023).  https://doi.org/10.1039/D3TA02842A
  21. S. Zhang, L. Shen, H. Deng, Q. Liu, X. You, J. Yuan, Z. Jiang, and S. Zhang, Ultrathin membranes for separations: A new era driven by advanced nanotechnology, Adv. Mater., 34, 2108457 (2022). 
  22. Y. Ying, Z. Yang, D. Shi, S. B. Peh, Y. Wang, X. Yu, H. Yang, K. Chai, and D. Zhao, Ultrathin covalent organic framework film as membrane gutter layer for high-permeance CO2 capture, J. Membr. Sci., 632, 119384 (2021). 
  23. T. D. M. Tessema, S. R. Venna, G. Dahe, D. P. Hopkinson, H. M. El-Kaderi, and A. K. Sekizkardes, Incorporation of benzimidazole linked polymers into Matrimid to yield mixed matrix membranes with enhanced CO2/N2 selectivity, J. Membr. Sci., 554, 90-96 (2018).  https://doi.org/10.1016/j.memsci.2018.02.054
  24. A. L. Ahmad, Y. O. Salaudeen, and Z. A. Jawad, Synthesis of asymmetric polyetherimide membrane for CO2/N2 separation, IOP Conference Series: Materials Science and Engineering, 206, 012068 (2017). 
  25. Y. Dai, M.D. Guiver, G. P. Robertson, Y. S. Kang, and K. J. Lee, Enhancement in the gas permeabilities of novel polysulfones with pendant 4-trimethylsilyl-α-hydroxylbenzyl substituents, Macromolecules, 36, 6807-6816 (2003).  https://doi.org/10.1021/ma0346411
  26. M. T. Ho, G. W. Allinson, and D. E. Wiley, Reducing the cost of CO2 capture from flue gases using membrane technology, Ind. Eng. Chem. Res., 47, 1562-1568 (2008).  https://doi.org/10.1021/ie070541y
  27. P. Zeng, C. Zhao, C. Liang, P. Li, H. Zhang, R. Wang, Y. Guo, H. Xia, and J. Sun, Comparative study on low-temperature CO2 adsorption performance of metal oxide-supported, graphite-casted K2CO3 pellets, Sep. Purif. Technol., 306, 122608 (2023). 
  28. A. Akbar Heidari and H. Mahdavi, Recent advances in the support layer, interlayer and active layer of TFC and TFN organic solvent nanofiltration (OSN) membranes: A review, Chem. Rec., 23, e202300189 (2023). 
  29. L. Francis, R. A. Al-Juboori, M. Khatri, and N. Hilal, Nanostructured nanofiltration hollow fiber membranes for metal recovery from industrial wastewater, J. Water Process Eng., 56, 104281 (2023). 
  30. S. Wu, W. Shi, L. Cui, and C. Xu, Enhancing contaminant rejection efficiency with ZIF-8 molecular sieving in sustainable mixed matrix membranes, Chem. Eng. J., 482, 148954 (2024). 
  31. S. Liu, S. Yuan, Y. Liang, H. Li, Z. Xu, Q. Xu, J. Yin, S. Shen, X. Yan, and J. Zhang, Engineering the catalyst layers towards enhanced local oxygen transport of Low-Pt proton exchange membrane fuel cells: Materials, designs, and methods, Int. J. Hydrog. Energy, 48, 4389-4417 (2023).  https://doi.org/10.1016/j.ijhydene.2022.10.249
  32. S. Chavez, B. Werghi, K. M. Sanroman Gutierrez, R. Chen, S. Lall, and M. Cargnello, Studying, promoting, exploiting, and predicting catalyst dynamics: The next frontier in heterogeneous catalysis, J. Phys. Chem. C, 127, 2127-2146 (2023).  https://doi.org/10.1021/acs.jpcc.2c06519
  33. D. I. Jang, Research papers: CO2 adsorption behaviors of activated carbons modified by chelating groups, Appl. Chem. Eng., 21, 396-400 (2010). 
  34. M. Liu, M. D. Nothling, P. A. Webley, Q. Fu, and G. G. Qiao, Postcombustion carbon capture using thin-film composite membranes, Acc. Chem. Res., 52, 1905-1914 (2019).  https://doi.org/10.1021/acs.accounts.9b00111
  35. S. Dong, Z. Wang, M. Sheng, Z. Qiao, and J. Wang, High-performance multi-layer composite membrane with enhanced interlayer compatibility and surface crosslinking for CO2 separation, J. Membr. Sci., 610, 118221 (2020). 
  36. V. Vatanpour, B. Kose-Mutlu, and I. Koyuncu, Electrospraying technique in fabrication of separation membranes: A review, Desalination, 533, 115765 (2022).
  37. B. F. Felemban, S. S. Iqbal, A. Bahadar, N. Hossain, and A. Jabbar, Reinforcement of single-walled carbon nanotubes on polydimethylsiloxane membranes for CO2, O2, and N2 permeability/selectivity, Environ. Sci. Pollut. Res., 30, 66800-66811 (2023).  https://doi.org/10.1007/s11356-023-26962-x
  38. I. Pinnau and L. G. Toy, Gas and vapor transport properties of amorphous perfluorinated copolymer membranes based on 2,2-bistrifluoromethyl-4,5-difluoro-1,3-dioxole/tetrafluoroethylene, J. Membr. Sci., 109, 125-133 (1996).  https://doi.org/10.1016/0376-7388(95)00193-X
  39. G. Zhang and H. Lin, Indispensable gutter layers in thin-film composite membranes for carbon capture, Green Energy Environ., https://doi.org/10.1016/j.gee.2023.08.001. 
  40. K. Ramasubramanian, M. A. Severance, P. K. Dutta, and W. S. W. Ho, Fabrication of zeolite/polymer multilayer composite membranes for carbon dioxide capture: Deposition of zeolite particles on polymer supports, J. Colloid Interf. Sci., 452, 203-214 (2015).  https://doi.org/10.1016/j.jcis.2015.04.014
  41. R. Castro-Munoz, K.V. Agrawal, and J. Coronas, Ultrathin permselective membranes: The latent way for efficient gas separation, RSC. Adv., 10, 12653-12670 (2020).  https://doi.org/10.1039/D0RA02254C
  42. C. H. Lau, P. Li, F. Li, T.-S. Chung, and D. R. Paul, Reverse-selective polymeric membranes for gas separations, Prog. Polym. Sci., 38, 740-766 (2013).  https://doi.org/10.1016/j.progpolymsci.2012.09.006
  43. Z. Dai, L. Ansaloni, and L. Deng, Recent advances in multi-layer composite polymeric membranes for CO2 separation: A review, Green Energy Environ., 1, 102-128 (2016).  https://doi.org/10.1016/j.gee.2016.08.001
  44. T. Brinkmann, J. Lilleparg, H. Notzke, J. Pohlmann, S. Shishatskiy, J. Wind, and T. Wolff, Development of CO2 selective poly(ethylene oxide)-based membranes: From laboratory to pilot plant scale, Engineering, 3, 485-493 (2017).  https://doi.org/10.1016/J.ENG.2017.04.004
  45. W. Yave, H. Huth, A. Car, and C. Schick, Peculiarity of a CO2-philic block copolymer confined in thin films with constrained thickness: "A super membrane for CO2-capture", Energy Environ. Sci., 4, 4656-4661 (2011).  https://doi.org/10.1039/c1ee02139g
  46. F. Chamani, B. Tanhaei, and M. P. Chenar, Innovative strategies for enhancing gas separation: Ionic liquid-coated PES membranes for improved CO2/N2 selectivity and permeance, Chemosphere, 351, 141179 (2024). 
  47. J. W. Maina, J. A. Schütz, L. Grundy, E. Des Ligneris, Z. Yi, L. Kong, C. Pozo-Gonzalo, M. Ionescu, and L. F. Dumée, Inorganic nanoparticles/metal organic framework hybrid membrane reactors for efficient photocatalytic conversion of CO2, ACS Appl. Mater. Interfaces, 9, 35010-35017 (2017).  https://doi.org/10.1021/acsami.7b11150
  48. J. Kim, Q. Fu, K. Xie, J. M. Scofield, S. E. Kentish, and G. G. Qiao, CO2 separation using surface-functionalized SiO2 nanoparticles incorporated ultra-thin film composite mixed matrix membranes for post-combustion carbon capture, J. Membr. Sci., 515, 54-62 (2016).  https://doi.org/10.1016/j.memsci.2016.05.029
  49. W. Cai, H. Chen, J. Lin, Y. Liu, F. Wu, and X. Pu, Inorganic nanoparticles-modified polyvinyl chloride separation membrane and enhanced anti-fouling performance, Surf. Interfaces, 38, 102885 (2023). 
  50. Z. Zhang, A. I. S. Ahmed, M. Z. Malik, N. Ali, F. Ali, M. O. Hassan, B. A. Mohamed, J. Zdarta, and M. Bilal, Cellulose/inorganic nanoparticles-based nano-biocomposite for abatement of water and wastewater pollutants, Chemosphere, 313, 137483 (2023). 
  51. L. Gong, X. Wang, R. Daiyan, X. Zhu, J. Leverett, Z. Duan, L. Zhang, R. Amal, L. Dai, and Z. Xia, Origin and predictive principle for selective products of electrocatalytic carbon dioxide reduction, J. Mater. Chem. A, 11, 15359-15369 (2023).  https://doi.org/10.1039/D3TA00336A
  52. X. Cheng, Y. Liao, Z. Lei, J. Li, X. Fan, and X. Xiao, Multi-scale design of MOF-based membrane separation for CO2/CH4 mixture via integration of molecular simulation, machine learning and process modeling and simulation, J. Membr. Sci., 672, 121430 (2023). 
  53. C. Wolf, H. Angellier-Coussy, N. Gontard, F. Doghieri, and V. Guillard, How the shape of fillers affects the barrier properties of polymer/non-porous particles nanocomposites: A review, J. Membr. Sci., 556, 393-418 (2018).  https://doi.org/10.1016/j.memsci.2018.03.085
  54. S. T. Oyama, M. Yamada, T. Sugawara, A. Takagaki, and R. Kikuchi, Review on mechanisms of gas permeation through inorganic membranes, J. Jpn. Pet. Inst., 54, 298-309 (2011).  https://doi.org/10.1627/jpi.54.298
  55. J. Kong and K. Li, An improved gas permeation method for characterising and predicting the performance of microporous asymmetric hollow fibre membranes used in gas absorption, J. Membr. Sci., 182, 271-281 (2001).  https://doi.org/10.1016/S0376-7388(00)00573-1
  56. G. S. Park, Transport principles-solution, diffusion and permeation in polymer membranes. In: P. M. Bungay, H. K. Lonsdale, and M. N. de Pinho (eds.). In Synthetic Membranes: Science, Engineering and Applications, 57-107, Springer, Dordrecht, Netherlands (1986). 
  57. M. Monteleone, A. Fuoco, E. Esposito, I. Rose, J. Chen, B. Comesana-Gandara, C. G. Bezzu, M. Carta, N. B. McKeown, and M. G. Shalygin, Advanced methods for analysis of mixed gas diffusion in polymeric membranes, J. Membr. Sci., 648, 120356 (2022). 
  58. W. Koros, G. Fleming, S. Jordan, T. Kim, and H. Hoehn, Polymeric membrane materials for solution-diffusion based permeation separations, Prog. Polym. Sci., 13, 339-401 (1988).  https://doi.org/10.1016/0079-6700(88)90002-0
  59. P. Pandey and R. Chauhan, Membranes for gas separation, Prog. Polym. Sci., 26, 853-893 (2001).  https://doi.org/10.1016/S0079-6700(01)00009-0
  60. S. Matteucci, Y. Yampolskii, B. D. Freeman, and I. Pinnau, Transport of gases and vapors in glassy and rubbery polymers. In: Y. Yampolskii, I. Pinnau, and B. Freeman (eds.). Materials Science of Membranes for Gas and Vapor Separation, 1-47, Wiley Online Library, Chichester, England (2006). 
  61. D. J. Kim and S. Y. Nam, Research and development trends of polyimide based material for gas separation, Membr. J., 23, 393-408 (2013).  https://doi.org/10.14579/MEMBRANE_JOURNAL.2013.23.6.393
  62. M. Karimi, Diffusion in polymer solids and solutions. In: J. Markos (ed.). Mass Transfer in Chemical Engineering Processes, 17, InTechOpen, London, United Kingdom (2011). 
  63. I. Kammakakam, H. W. Yoon, S. Nam, H. B. Park, and T.-H. Kim, Novel piperazinium-mediated crosslinked polyimide membranes for high performance CO2 separation, J. Membr. Sci., 487, 90-98 (2015).  https://doi.org/10.1016/j.memsci.2015.03.053
  64. V. Vijayalekshmi, K. Kim, and S. Y. Nam, Recent advances in polybenzimidazole (PBI)-based polymer electrolyte membranes for high temperature fuel cell applications, Appl. Chem. Eng., 30, 643-651 (2019). 
  65. R. W. Baker, J. Wijmans, and Y. Huang, Permeability, permeance and selectivity: A preferred way of reporting pervaporation performance data, J. Membr. Sci., 348, 346-352 (2010).  https://doi.org/10.1016/j.memsci.2009.11.022
  66. B. D. Freeman, Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes, Macromolecules, 32, 375-380 (1999).  https://doi.org/10.1021/ma9814548
  67. I. Kammakakam, H. W. Kim, S. Y. Nam, H. B. Park, T.-H. Kim, Alkyl imidazolium-functionalized cardo-based poly(ether ketone)s as novel polymer membranes for O2/N2 and CO2/N2 separations, Polymer, 54, 3534-3541(2013).  https://doi.org/10.1016/j.polymer.2013.05.006
  68. I. Kammakakam, S. Y. Nam, and T.-H. Kim, PEG-imidazolium-functionalized 6FDA-durene polyimide as a novel polymeric membrane for enhanced CO2 separation, RSC Adv., 6, 31083-31091 (2016).  https://doi.org/10.1039/C6RA00735J
  69. J. H. Kim, K. Kim, and S. Y. Nam, Research trends of polybenzimidazole-based membranes for hydrogen purification applications, Appl. Chem. Eng., 31, 453-466 (2020). 
  70. P. Gabrielli, M. Gazzani, and M. Mazzotti, On the optimal design of membrane-based gas separation processes, J. Membr. Sci., 526, 118-130 (2017).  https://doi.org/10.1016/j.memsci.2016.11.022
  71. H. B. Park, S. Y. Nam, J. W. Rhim, J. M. Lee, S. E. Kim, J. R. Kim, and Y. M. Lee, Gas-transport properties through cation-exchanged sulfonated polysulfone membranes, J. Appl. Polym. Sci., 86, 2611-2617 (2022). https://doi.org/10.1002/app.11200
  72. J. M. Ki and S.Y. Nam, Preparation and characterization of organic solvent-resistant polybenzimidazole membranes, Appl. Chem. Eng., 28, 420-426 (2017).  https://doi.org/10.14478/ACE.2017.1015
  73. C. A. Scholes, S. E. Kentish, and G. W. Stevens, Effects of minor components in carbon dioxide capture using polymeric gas separation membranes, Sep. Purif. Rev., 38, 1-44 (2009).  https://doi.org/10.1080/15422110802411442
  74. H. Y. Hwang, S. Y. Nam, H. C. Koh, S. Y. Ha, G. Barbieri, and E. Drioli, The effect of operating conditions on the performance of hollow fiber membrane modules for CO2/N2 separation, J. Ind. Eng. Chem., 18, 205-211 (2012).  https://doi.org/10.1016/j.jiec.2011.11.021
  75. N. Mehio, S. Dai, and D.-e. Jiang, Quantum mechanical basis for kinetic diameters of small gaseous molecules, J. Phys. Chem. A, 118, 1150-1154 (2014).  https://doi.org/10.1021/jp412588f
  76. K. S. Im; T. Y. Son, K. Kim, F. K. Jeong, and S. Y. Nam, Research and development trend of electrolyte membrane applicable to water electrolysis system, Appl. Chem. Eng., 30, 389-398 (2019). 
  77. L. M. Robeson, The upper bound revisited, J. Membr. Sci., 320, 390-400 (2008).  https://doi.org/10.1016/j.memsci.2008.04.030
  78. Y. Shi, R. Ni, and Y. Zhao, Review on multidimensional adsorbents for CO2 capture from ambient air: Recent advances and future perspectives, Energy Fuels, 37, 6365-6381 (2023).  https://doi.org/10.1021/acs.energyfuels.3c00381
  79. R. Castro-Munoz, M. Zamidi Ahmad, M. Malankowska, and J. Coronas, A new relevant membrane application: CO2 direct air capture (DAC), Chem. Eng. J., 446, 137047 (2022).