과제정보
This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1A6A1A03038697).
참고문헌
- F. Bisotti, K.A. Hoff, A. Mathisen, and J. Hovland, Direct Air capture (DAC) deployment: A review of the industrial deployment, Chem. Eng. Sci., 283, 119416 (2024).
- Y. Ou, G. Iyer, L. Clarke, J. Edmonds, A.A. Fawcett, N. Hultman, J.R. Mcfarland, M. Binsted, R. Cui, and C. Fyson, Can updated climate pledges limit warming well below 2℃?, Science, 374, 693-695 (2021). https://doi.org/10.1126/science.abl8976
- B. K. Sovacool, C. M. Baum, S. Low, C. Roberts, and J. Steinhauser, Climate policy for a net-zero future: Ten recommendations for Direct Air Capture, Environ. Res. Lett., 17, 074014 (2022).
- J. Klankermayer, S. Wesselbaum, K. Beydoun, and W. Leitner, Selective catalytic synthesis using the combination of carbon dioxide and hydrogen: catalytic chess at the interface of energy and chemistry, Angew. Chem.-Int. Ed., 55, 7296-7343 (2016). https://doi.org/10.1002/anie.201507458
- P. Zhao, G. Zhang, H. Yan, and Y. Zhao, The latest development on amine functionalized solid adsorbents for post-combustion CO2 capture: Analysis review, Chin. J. Chem. Eng., 35, 17-43 (2021). https://doi.org/10.1016/j.cjche.2020.11.028
- S. Fujikawa, R. Selyanchyn, T. Kunitake, A new strategy for membrane-based direct air capture, Polym. J. 53, 111-119 (2021). https://doi.org/10.1038/s41428-020-00429-z
- W.C. Wilfong, T. Ji, Z. Bao, H. Zhai, Q. Wang, Y. Duan, Y. Soong, B. Li, F. Shi, and M.L. Gray, Big data analysis and technical review of regeneration for carbon capture processes, Energy Fuels, 37, 11497-11531 (2023).
- S. Wang, X. Li, H. Wu, Z. Tian, Q. Xin, G. He, D. Peng, S. Chen, Y. Yin, and Z. Jiang, Advances in high permeability polymer-based membrane materials for CO2 separations, Energy Environ. Sci., 9, 1863-1890 (2016).
- A. Brunetti, F. Scura, G. Barbieri, and E. Drioli, Membrane technologies for CO2 separation, J. Membr. Sci., 359, 115-125 (2010). https://doi.org/10.1016/j.memsci.2009.11.040
- M. Pasichnyk, P. Stanovsky, P. Polezhaev, B. Zach, M. Syc, M. Bobak, J. C. Jansen, M. Pribyl, J. E. Bara, and K. Friess, Membrane technology for challenging separations: Removal of CO2, SO2 and NOx from flue and waste gases, Sep. Purif. Technol., 323, 124436 (2023).
- X. He and M.-B. Hagg, Membranes for environmentally friendly energy processes, Membranes, 2, 706-726 (2012). https://doi.org/10.3390/membranes2040706
- R. Castro-Munoz, M. Z. Ahmad, M. Malankowska, and J. Coronas, A new relevant membrane application: CO2 direct air capture (DAC), Chem. Eng. Sci., 446, 137047 (2022).
- B. Belaissaoui, E. Lasseuguette, S. Janakiram, L. Deng, and M.-C. Ferrari, Analysis of CO2 facilitation transport effect through a hybrid poly(allyl amine) membrane: Pathways for further improvement, Membranes, 10, 367 (2020).
- R. Selyanchyn and S. Fujikawa, Membrane thinning for efficient CO2 capture, Sci. Technol. Adv. Mater., 18, 816-827 (2017) https://doi.org/10.1080/14686996.2017.1386531
- K. Xie, Q. Fu, G. G. Qiao, and P. A. Webley, Recent progress on fabrication methods of polymeric thin film gas separation membranes for CO2 capture, J. Membr. Sci., 572, 38-60 (2019). https://doi.org/10.1016/j.memsci.2018.10.049
- Y. Chen, L. Zhao, B. Wang, P. Dutta, and W. W. Ho, Amine-containing polymer/zeolite Y composite membranes for CO2/N2 separation, J. Membr. Sci, 497, 21-28 (2016). https://doi.org/10.1016/j.memsci.2015.09.036
- T.C. Merkel, H. Lin, X. Wei, and R. Baker, Power plant post-combustion carbon dioxide capture: An opportunity for membranes, J. Membr. Sci., 359, 126-139 (2010). https://doi.org/10.1016/j.memsci.2009.10.041
- C. Castel, R. Bounaceur, and E. Favre, Membrane processes for direct carbon dioxide capture from air: Possibilities and limitations, Front. Chem. Eng., 3, 668867 (2021).
- Y.-Y. Lee and B. Gurkan, Graphene oxide reinforced facilitated transport membrane with poly(ionic liquid) and ionic liquid carriers for CO2/N2 separation, J. Membr. Sci., 638, 119652 (2021).
- J. Wu, F. Hillman, C.-Z. Liang, Y. Jia, and S. Zhang, Progressing thin-film membrane designs for post-combustion CO2 capture: Performance or practicality?, J. Mater. Chem. A, 11, 17452-17478 (2023). https://doi.org/10.1039/D3TA02842A
- S. Zhang, L. Shen, H. Deng, Q. Liu, X. You, J. Yuan, Z. Jiang, and S. Zhang, Ultrathin membranes for separations: A new era driven by advanced nanotechnology, Adv. Mater., 34, 2108457 (2022).
- Y. Ying, Z. Yang, D. Shi, S. B. Peh, Y. Wang, X. Yu, H. Yang, K. Chai, and D. Zhao, Ultrathin covalent organic framework film as membrane gutter layer for high-permeance CO2 capture, J. Membr. Sci., 632, 119384 (2021).
- T. D. M. Tessema, S. R. Venna, G. Dahe, D. P. Hopkinson, H. M. El-Kaderi, and A. K. Sekizkardes, Incorporation of benzimidazole linked polymers into Matrimid to yield mixed matrix membranes with enhanced CO2/N2 selectivity, J. Membr. Sci., 554, 90-96 (2018). https://doi.org/10.1016/j.memsci.2018.02.054
- A. L. Ahmad, Y. O. Salaudeen, and Z. A. Jawad, Synthesis of asymmetric polyetherimide membrane for CO2/N2 separation, IOP Conference Series: Materials Science and Engineering, 206, 012068 (2017).
- Y. Dai, M.D. Guiver, G. P. Robertson, Y. S. Kang, and K. J. Lee, Enhancement in the gas permeabilities of novel polysulfones with pendant 4-trimethylsilyl-α-hydroxylbenzyl substituents, Macromolecules, 36, 6807-6816 (2003). https://doi.org/10.1021/ma0346411
- M. T. Ho, G. W. Allinson, and D. E. Wiley, Reducing the cost of CO2 capture from flue gases using membrane technology, Ind. Eng. Chem. Res., 47, 1562-1568 (2008). https://doi.org/10.1021/ie070541y
- P. Zeng, C. Zhao, C. Liang, P. Li, H. Zhang, R. Wang, Y. Guo, H. Xia, and J. Sun, Comparative study on low-temperature CO2 adsorption performance of metal oxide-supported, graphite-casted K2CO3 pellets, Sep. Purif. Technol., 306, 122608 (2023).
- A. Akbar Heidari and H. Mahdavi, Recent advances in the support layer, interlayer and active layer of TFC and TFN organic solvent nanofiltration (OSN) membranes: A review, Chem. Rec., 23, e202300189 (2023).
- L. Francis, R. A. Al-Juboori, M. Khatri, and N. Hilal, Nanostructured nanofiltration hollow fiber membranes for metal recovery from industrial wastewater, J. Water Process Eng., 56, 104281 (2023).
- S. Wu, W. Shi, L. Cui, and C. Xu, Enhancing contaminant rejection efficiency with ZIF-8 molecular sieving in sustainable mixed matrix membranes, Chem. Eng. J., 482, 148954 (2024).
- S. Liu, S. Yuan, Y. Liang, H. Li, Z. Xu, Q. Xu, J. Yin, S. Shen, X. Yan, and J. Zhang, Engineering the catalyst layers towards enhanced local oxygen transport of Low-Pt proton exchange membrane fuel cells: Materials, designs, and methods, Int. J. Hydrog. Energy, 48, 4389-4417 (2023). https://doi.org/10.1016/j.ijhydene.2022.10.249
- S. Chavez, B. Werghi, K. M. Sanroman Gutierrez, R. Chen, S. Lall, and M. Cargnello, Studying, promoting, exploiting, and predicting catalyst dynamics: The next frontier in heterogeneous catalysis, J. Phys. Chem. C, 127, 2127-2146 (2023). https://doi.org/10.1021/acs.jpcc.2c06519
- D. I. Jang, Research papers: CO2 adsorption behaviors of activated carbons modified by chelating groups, Appl. Chem. Eng., 21, 396-400 (2010).
- M. Liu, M. D. Nothling, P. A. Webley, Q. Fu, and G. G. Qiao, Postcombustion carbon capture using thin-film composite membranes, Acc. Chem. Res., 52, 1905-1914 (2019). https://doi.org/10.1021/acs.accounts.9b00111
- S. Dong, Z. Wang, M. Sheng, Z. Qiao, and J. Wang, High-performance multi-layer composite membrane with enhanced interlayer compatibility and surface crosslinking for CO2 separation, J. Membr. Sci., 610, 118221 (2020).
- V. Vatanpour, B. Kose-Mutlu, and I. Koyuncu, Electrospraying technique in fabrication of separation membranes: A review, Desalination, 533, 115765 (2022).
- B. F. Felemban, S. S. Iqbal, A. Bahadar, N. Hossain, and A. Jabbar, Reinforcement of single-walled carbon nanotubes on polydimethylsiloxane membranes for CO2, O2, and N2 permeability/selectivity, Environ. Sci. Pollut. Res., 30, 66800-66811 (2023). https://doi.org/10.1007/s11356-023-26962-x
- I. Pinnau and L. G. Toy, Gas and vapor transport properties of amorphous perfluorinated copolymer membranes based on 2,2-bistrifluoromethyl-4,5-difluoro-1,3-dioxole/tetrafluoroethylene, J. Membr. Sci., 109, 125-133 (1996). https://doi.org/10.1016/0376-7388(95)00193-X
- G. Zhang and H. Lin, Indispensable gutter layers in thin-film composite membranes for carbon capture, Green Energy Environ., https://doi.org/10.1016/j.gee.2023.08.001.
- K. Ramasubramanian, M. A. Severance, P. K. Dutta, and W. S. W. Ho, Fabrication of zeolite/polymer multilayer composite membranes for carbon dioxide capture: Deposition of zeolite particles on polymer supports, J. Colloid Interf. Sci., 452, 203-214 (2015). https://doi.org/10.1016/j.jcis.2015.04.014
- R. Castro-Munoz, K.V. Agrawal, and J. Coronas, Ultrathin permselective membranes: The latent way for efficient gas separation, RSC. Adv., 10, 12653-12670 (2020). https://doi.org/10.1039/D0RA02254C
- C. H. Lau, P. Li, F. Li, T.-S. Chung, and D. R. Paul, Reverse-selective polymeric membranes for gas separations, Prog. Polym. Sci., 38, 740-766 (2013). https://doi.org/10.1016/j.progpolymsci.2012.09.006
- Z. Dai, L. Ansaloni, and L. Deng, Recent advances in multi-layer composite polymeric membranes for CO2 separation: A review, Green Energy Environ., 1, 102-128 (2016). https://doi.org/10.1016/j.gee.2016.08.001
- T. Brinkmann, J. Lilleparg, H. Notzke, J. Pohlmann, S. Shishatskiy, J. Wind, and T. Wolff, Development of CO2 selective poly(ethylene oxide)-based membranes: From laboratory to pilot plant scale, Engineering, 3, 485-493 (2017). https://doi.org/10.1016/J.ENG.2017.04.004
- W. Yave, H. Huth, A. Car, and C. Schick, Peculiarity of a CO2-philic block copolymer confined in thin films with constrained thickness: "A super membrane for CO2-capture", Energy Environ. Sci., 4, 4656-4661 (2011). https://doi.org/10.1039/c1ee02139g
- F. Chamani, B. Tanhaei, and M. P. Chenar, Innovative strategies for enhancing gas separation: Ionic liquid-coated PES membranes for improved CO2/N2 selectivity and permeance, Chemosphere, 351, 141179 (2024).
- J. W. Maina, J. A. Schütz, L. Grundy, E. Des Ligneris, Z. Yi, L. Kong, C. Pozo-Gonzalo, M. Ionescu, and L. F. Dumée, Inorganic nanoparticles/metal organic framework hybrid membrane reactors for efficient photocatalytic conversion of CO2, ACS Appl. Mater. Interfaces, 9, 35010-35017 (2017). https://doi.org/10.1021/acsami.7b11150
- J. Kim, Q. Fu, K. Xie, J. M. Scofield, S. E. Kentish, and G. G. Qiao, CO2 separation using surface-functionalized SiO2 nanoparticles incorporated ultra-thin film composite mixed matrix membranes for post-combustion carbon capture, J. Membr. Sci., 515, 54-62 (2016). https://doi.org/10.1016/j.memsci.2016.05.029
- W. Cai, H. Chen, J. Lin, Y. Liu, F. Wu, and X. Pu, Inorganic nanoparticles-modified polyvinyl chloride separation membrane and enhanced anti-fouling performance, Surf. Interfaces, 38, 102885 (2023).
- Z. Zhang, A. I. S. Ahmed, M. Z. Malik, N. Ali, F. Ali, M. O. Hassan, B. A. Mohamed, J. Zdarta, and M. Bilal, Cellulose/inorganic nanoparticles-based nano-biocomposite for abatement of water and wastewater pollutants, Chemosphere, 313, 137483 (2023).
- L. Gong, X. Wang, R. Daiyan, X. Zhu, J. Leverett, Z. Duan, L. Zhang, R. Amal, L. Dai, and Z. Xia, Origin and predictive principle for selective products of electrocatalytic carbon dioxide reduction, J. Mater. Chem. A, 11, 15359-15369 (2023). https://doi.org/10.1039/D3TA00336A
- X. Cheng, Y. Liao, Z. Lei, J. Li, X. Fan, and X. Xiao, Multi-scale design of MOF-based membrane separation for CO2/CH4 mixture via integration of molecular simulation, machine learning and process modeling and simulation, J. Membr. Sci., 672, 121430 (2023).
- C. Wolf, H. Angellier-Coussy, N. Gontard, F. Doghieri, and V. Guillard, How the shape of fillers affects the barrier properties of polymer/non-porous particles nanocomposites: A review, J. Membr. Sci., 556, 393-418 (2018). https://doi.org/10.1016/j.memsci.2018.03.085
- S. T. Oyama, M. Yamada, T. Sugawara, A. Takagaki, and R. Kikuchi, Review on mechanisms of gas permeation through inorganic membranes, J. Jpn. Pet. Inst., 54, 298-309 (2011). https://doi.org/10.1627/jpi.54.298
- J. Kong and K. Li, An improved gas permeation method for characterising and predicting the performance of microporous asymmetric hollow fibre membranes used in gas absorption, J. Membr. Sci., 182, 271-281 (2001). https://doi.org/10.1016/S0376-7388(00)00573-1
- G. S. Park, Transport principles-solution, diffusion and permeation in polymer membranes. In: P. M. Bungay, H. K. Lonsdale, and M. N. de Pinho (eds.). In Synthetic Membranes: Science, Engineering and Applications, 57-107, Springer, Dordrecht, Netherlands (1986).
- M. Monteleone, A. Fuoco, E. Esposito, I. Rose, J. Chen, B. Comesana-Gandara, C. G. Bezzu, M. Carta, N. B. McKeown, and M. G. Shalygin, Advanced methods for analysis of mixed gas diffusion in polymeric membranes, J. Membr. Sci., 648, 120356 (2022).
- W. Koros, G. Fleming, S. Jordan, T. Kim, and H. Hoehn, Polymeric membrane materials for solution-diffusion based permeation separations, Prog. Polym. Sci., 13, 339-401 (1988). https://doi.org/10.1016/0079-6700(88)90002-0
- P. Pandey and R. Chauhan, Membranes for gas separation, Prog. Polym. Sci., 26, 853-893 (2001). https://doi.org/10.1016/S0079-6700(01)00009-0
- S. Matteucci, Y. Yampolskii, B. D. Freeman, and I. Pinnau, Transport of gases and vapors in glassy and rubbery polymers. In: Y. Yampolskii, I. Pinnau, and B. Freeman (eds.). Materials Science of Membranes for Gas and Vapor Separation, 1-47, Wiley Online Library, Chichester, England (2006).
- D. J. Kim and S. Y. Nam, Research and development trends of polyimide based material for gas separation, Membr. J., 23, 393-408 (2013). https://doi.org/10.14579/MEMBRANE_JOURNAL.2013.23.6.393
- M. Karimi, Diffusion in polymer solids and solutions. In: J. Markos (ed.). Mass Transfer in Chemical Engineering Processes, 17, InTechOpen, London, United Kingdom (2011).
- I. Kammakakam, H. W. Yoon, S. Nam, H. B. Park, and T.-H. Kim, Novel piperazinium-mediated crosslinked polyimide membranes for high performance CO2 separation, J. Membr. Sci., 487, 90-98 (2015). https://doi.org/10.1016/j.memsci.2015.03.053
- V. Vijayalekshmi, K. Kim, and S. Y. Nam, Recent advances in polybenzimidazole (PBI)-based polymer electrolyte membranes for high temperature fuel cell applications, Appl. Chem. Eng., 30, 643-651 (2019).
- R. W. Baker, J. Wijmans, and Y. Huang, Permeability, permeance and selectivity: A preferred way of reporting pervaporation performance data, J. Membr. Sci., 348, 346-352 (2010). https://doi.org/10.1016/j.memsci.2009.11.022
- B. D. Freeman, Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes, Macromolecules, 32, 375-380 (1999). https://doi.org/10.1021/ma9814548
- I. Kammakakam, H. W. Kim, S. Y. Nam, H. B. Park, T.-H. Kim, Alkyl imidazolium-functionalized cardo-based poly(ether ketone)s as novel polymer membranes for O2/N2 and CO2/N2 separations, Polymer, 54, 3534-3541(2013). https://doi.org/10.1016/j.polymer.2013.05.006
- I. Kammakakam, S. Y. Nam, and T.-H. Kim, PEG-imidazolium-functionalized 6FDA-durene polyimide as a novel polymeric membrane for enhanced CO2 separation, RSC Adv., 6, 31083-31091 (2016). https://doi.org/10.1039/C6RA00735J
- J. H. Kim, K. Kim, and S. Y. Nam, Research trends of polybenzimidazole-based membranes for hydrogen purification applications, Appl. Chem. Eng., 31, 453-466 (2020).
- P. Gabrielli, M. Gazzani, and M. Mazzotti, On the optimal design of membrane-based gas separation processes, J. Membr. Sci., 526, 118-130 (2017). https://doi.org/10.1016/j.memsci.2016.11.022
- H. B. Park, S. Y. Nam, J. W. Rhim, J. M. Lee, S. E. Kim, J. R. Kim, and Y. M. Lee, Gas-transport properties through cation-exchanged sulfonated polysulfone membranes, J. Appl. Polym. Sci., 86, 2611-2617 (2022). https://doi.org/10.1002/app.11200
- J. M. Ki and S.Y. Nam, Preparation and characterization of organic solvent-resistant polybenzimidazole membranes, Appl. Chem. Eng., 28, 420-426 (2017). https://doi.org/10.14478/ACE.2017.1015
- C. A. Scholes, S. E. Kentish, and G. W. Stevens, Effects of minor components in carbon dioxide capture using polymeric gas separation membranes, Sep. Purif. Rev., 38, 1-44 (2009). https://doi.org/10.1080/15422110802411442
- H. Y. Hwang, S. Y. Nam, H. C. Koh, S. Y. Ha, G. Barbieri, and E. Drioli, The effect of operating conditions on the performance of hollow fiber membrane modules for CO2/N2 separation, J. Ind. Eng. Chem., 18, 205-211 (2012). https://doi.org/10.1016/j.jiec.2011.11.021
- N. Mehio, S. Dai, and D.-e. Jiang, Quantum mechanical basis for kinetic diameters of small gaseous molecules, J. Phys. Chem. A, 118, 1150-1154 (2014). https://doi.org/10.1021/jp412588f
- K. S. Im; T. Y. Son, K. Kim, F. K. Jeong, and S. Y. Nam, Research and development trend of electrolyte membrane applicable to water electrolysis system, Appl. Chem. Eng., 30, 389-398 (2019).
- L. M. Robeson, The upper bound revisited, J. Membr. Sci., 320, 390-400 (2008). https://doi.org/10.1016/j.memsci.2008.04.030
- Y. Shi, R. Ni, and Y. Zhao, Review on multidimensional adsorbents for CO2 capture from ambient air: Recent advances and future perspectives, Energy Fuels, 37, 6365-6381 (2023). https://doi.org/10.1021/acs.energyfuels.3c00381
- R. Castro-Munoz, M. Zamidi Ahmad, M. Malankowska, and J. Coronas, A new relevant membrane application: CO2 direct air capture (DAC), Chem. Eng. J., 446, 137047 (2022).