DOI QR코드

DOI QR Code

The Gallai and Anti-Gallai Graphs of Strongly Regular Graphs

  • Jeepamol J. Palathingal (Department of Mathematics, PM Government College) ;
  • Aparna Lakshmanan S. (Department of Mathematics, Cochin University of Science and Technology) ;
  • Greg Markowsky (School of Mathematics, Monash University)
  • Received : 2023.01.08
  • Accepted : 2023.11.03
  • Published : 2024.03.31

Abstract

In this paper, we show that if G is strongly regular then the Gallai graph Γ(G) and the anti-Gallai graph ∆(G) of G are edge-regular. We also identify conditions under which the Gallai and anti-Gallai graphs are themselves strongly regular, as well as conditions under which they are 2-connected. We include also a number of concrete examples and a discussion of spectral properties of the Gallai and anti-Gallai graphs.

Keywords

Acknowledgement

We would like to thank Misha Lavrov for helpful conversations, and an anonymous referee for useful comments.

References

  1. P. Anand, H. Escaudro, R. Gera, S. G. Hartke and D. Stolee, On the hardness of recognizing triangular line graphs, Discrete Math., 312(17)(2012), 2627-2638. https://doi.org/10.1016/j.disc.2011.11.037
  2. P. Anand, H. Escaudro, R. Gera and C. Martell, Triangular line graph and word sense disambiguation, Discrete Appl. Math., 159(11)(2011), 1160-1165. https://doi.org/10.1016/j.dam.2011.03.019
  3. S. Aparna Lakshmanan, Characterization of some special classes of the Gallai and the anti-Gallai graphs, Discourse, 1(2013), 85-89.
  4. S. Aparna Lakshmanan, S. B. Rao and A. Vijayakumar, Gallai and anti-Gallai graphs of a graph, Math. Bohem., 132(1)(2007), 43-54. https://doi.org/10.21136/MB.2007.133996
  5. R. Balakrishnan and K. Ranganathan, A textbook of graph theory, Springer-Verlag, New York, 2000, xii+227 pp.
  6. R. B. Bapat, Graphs and matrices, Springer, London Hindustan Book Agency, New Delhi, 2014, xii+193 pp.
  7. L. W. Beineke and R. J. Wilson, Topics in algebraic graph theory, Cambridge University Press, Cambridge, UK (2004).
  8. A. E. Brouwer and J. H. Koolen, The distance-regular graphs of valency four, J. Algebraic Combin., 10(1)(1999), 5-24. https://doi.org/10.1023/A:1018693118268
  9. A. E. Brouwer and D. M. Mesner, The connectivity of strongly regular graphs, European J. Combin., 6(3)(1985), 215-216. https://doi.org/10.1016/S0195-6698(85)80030-5
  10. A. E. Brouwer and H. Van Maldeghem, Strongly regular graphs, Encyclopedia Math. Appl. 182, Cambridge University Press, Cambridge, 2022, xvii+462 pp.
  11. P. J. Cameron, Strongly regular graphs, In "Topics in Algebraic Graph Theory" (eds. L. W. Brualdi, R. J. Wilson), Cambridge Univ. Press, Cambridge, 2004.
  12. D. M. Cvetkovi'c, Graphs and their spectra, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., no. 354-356, (1971), 1-50.
  13. D. M. Cvetkovic, M. Doob and H. Sachs, Spectra of graphs (3rd edition), Johann Ambrosius Barth Verlag, Heidelberg-Leipzig, 1995, 447 pp.
  14. D. M. Cvetkovic, P. Rowlinson and S. Simic, An introduction to the theory of graph spectra, Cambridge University Press, Cambridge, 2010, xii+364 pp.
  15. T. Gallai, Transitiv orientierbare graphen, Acta Math. Acad. Sci. Hungar., 18(1967), 25-66. https://doi.org/10.1007/BF02020961
  16. P. Garg, D. Sinha and S. Goyal, Eulerian and Hamiltonian properties of Gallai and anti-Gallai total graphs, J. Indones. Math. Soc., 21(2)(2015), 105-116.
  17. C. Godsil and G. Royle, Algebraic graph theory, Grad. Texts in Math. 207, Springer-Verlag, New York, 2001, xx+439 pp.
  18. I. Gutman and I. Suriha, On the nullity of line graphs of trees, Discrete Math., 232(2001), 35-45. https://doi.org/10.1016/S0012-365X(00)00187-4
  19. F. Joos, V. B. Le and D. Rautenbach, Forests and trees among Gallai graphs, Discrete Math., 338(2)(2015), 190-195.
  20. K. Kavitha and N. G. David, Dominator coloring of some classes of graphs, Int. J. Math. Arch., 3(11)(2012), 3954-3957.
  21. V. B. Le, Mortality of iterated Gallai graphs, Period. Math. Hungar., 27(2)(1993), 105-124. https://doi.org/10.1007/BF01876636
  22. V. B. Le, Gallai graphs and anti-Gallai Graphs, Discrete Math., 159(1996), 179-189. https://doi.org/10.1016/0012-365X(95)00109-A
  23. J. J. Palathingal and S. Aparna Lakshmanan, Gallai and anti-Gallai graph operators, Electron. Notes Discrete Math. 63(2017), 447-453. https://doi.org/10.1016/j.endm.2017.11.042
  24. J. J. Palathingal, G. Indulal and S. Aparna Lakshmanan, Spectrum of Gallai graph of some graphs, Indian J. Pure Appl. Math., 51(4)(2020), 1829-1841. https://doi.org/10.1007/s13226-020-0499-0
  25. A. Poovathingal and J. V. Kureethara, Some characterizations of Gallai graphs, AIP Conference Proceedings, 2236(1)(2020), 060003.
  26. A. Poovathingal, J. V. Kureethara and D. Deepthy, A survey of the studies on Gallai and anti-Gallai graphs, Commun. Comb. Optim., 6(1)(2021), 93-112.
  27. E. Prisner, Graph dynamics, Pitman Res. Notes Math. Ser. 338, Longman, Harlow, 1995, xii+233 pp.
  28. E. Sampathkumar and S. B. Chikkodimath, The semi-total graphs of a graph II, J. Karnatak Univ. Sci., 18(1973), 281-284.