DOI QR코드

DOI QR Code

Effect of Treatment with Selected Plant Extracts on the Physiological and Biochemical Parameters of Rice Plants under Salt Stress

  • Hyun-Hwa Park (Dep. of Oriental Medicine Resources, Sunchon National Univ.) ;
  • Pyae Pyae Win (Dep. of Oriental Medicine Resources, Sunchon National Univ.) ;
  • Yong-In Kuk (Dep. of Oriental Medicine Resources, Sunchon National Univ.)
  • Received : 2024.02.08
  • Accepted : 2024.02.15
  • Published : 2024.03.01

Abstract

High soil salinity is the most severe threat to global rice production as it causes a significant decline in rice yield. Here, we investigated the effects of various plant extracts on rice plant stress associated with high salinity. Additionally, we examined various physiological and biochemical parameters such as growth, photosynthetic activity, chlorophyll content, and lipid peroxidation - in rice plants after treatment with selected plant extracts under salt stress conditions. Of the 11 extracts tested, four - soybean leaf, soybean stem, moringa (Moringa oleifera), and Undaria pinnatifida extracts - were found to effectively reduce salt stress. A reduction of only 3-23% in shoot fresh weight was observed in rice plants under salt stress that were treated with these extracts, compared to the 43% reduction observed in plants that were exposed to stress but not given plant extract treatments (control plants). The effectiveness varied with the concentration of the plant extracts. Water content was higher in rice plants treated with the extracts than in the control plants after 6 d of salt stress, but not after 4 d of salt stress. Although photosynthetic efficiency (Fv/Fm), electron transport rate (ETR), and the content of pigments (chlorophyll and carotenoid) varied based on the types and levels of stress and the extracts that the rice plants were treated with, generally, photosynthetic efficiency and pigment content were higher in the treated rice compared to control plants. Reactive oxygen species (ROS), such as superoxide radicals, hydrogen peroxide (H2O2), and malondialdehyde (MDA), increased as the duration of stress increased. ROS and MDA levels were lower in the treated rice than in the control plants. Proline and soluble sugar accumulation also increased with the duration of the stress period. However, proline and soluble sugar accumulation were lower in the treated rice than in the control plants. Generally, the values of all the parameters investigated in this study were similar, regardless of the plant extract used to treat the rice plants. Thus, the extracts found to be effective can be used to alleviate the adverse effects of stress on rice crops associated with high-salinity soils.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (No. NRF-2021R1F1A1049722).

References

  1. Abdel Latef, A. A. H., K. Srivastava, H. Saber, E. A. Alwaleed, and L. S. P. Tran. 2017. Sargassum muticum and Jania rubens regulate amino acid metabolism to improve growth and alleviate salinity in chickpea. Sci. Rep. 7 : 10537. 
  2. Ahmad, P., C. A. Jalee, M. A. Salem, G. Nabi, and S. Sharma. 2010. Roles of Enzymatic and non-enzymatic antioxidants in plants during abiotic stress. Crit. Rev. Biotechnol. 30 : 161-175.  https://doi.org/10.3109/07388550903524243
  3. Amirjani, M. R. 2010. Effect of NaCl on some physiological parameters of rice. Eur. J. Biol. Sci. 3 : 6-16. 
  4. Anjum, S. A., X. Y. Xie, L. C. Wang, M. F. Saleem, C. Man, and W. Lei. 2011. Morphological, physiological and biochemical responses of plants to drought stress. Afr. J. Agric. Res. 6 : 2026-2032. 
  5. Assouline, S., D. Russo, A. Silber, and D. Or. 2015. Balancing water scarcity and quality for sustainable irrigated agriculture. Water Resour. Res. 51 : 3419-3436.  https://doi.org/10.1002/2015WR017071
  6. Aziz, N., M. Mahgoub, and Z. Siam. 2011. Growth, flowering and chemical constituents performance of Amaranthus tricolor plants as influenced by seaweed (Ascophyllum nodosum) extract application under salt stress conditions. J. Appl. Sci. Res. 7 : 1472-1484. 
  7. Battacharyya, D., M. Z. Babgohari, P. Rathor, and B. Prithiviraj. 2015. Seaweed extracts as biostimulants in horticulture. Sci. Hortic. 196 : 39-48.  https://doi.org/10.1016/j.scienta.2015.09.012
  8. Bing-Sheng, L., M. Hong-Yuan, L. Xiao-Wei, W. Li-Xing, L. Hai-Yan, Y. Hao-Yu, and L. Zheng-Wei. 2014. Proline accumulation is not correlated with saline-alkaline stress tolerance in rice seedlings. J. Agron. 107 : 51-60.  https://doi.org/10.2134/agronj14.0327
  9. Blunden, G., T. Jenkins, and Y. Liu. 1997. Enhanced leaf chlorophyll levels in plants treated with seaweed extract. J. Appl. Phycol. 8 : 535-543.  https://doi.org/10.1007/BF02186333
  10. Buege, J. A. and S. D. Aust. 1978. Microsomal lipid peroxidation. Meth. Enzymol. 52 : 302-310.  https://doi.org/10.1016/S0076-6879(78)52032-6
  11. Cardil, A., D. M. Molina, and L. N. Kobziar. 2014. Extreme temperature days and potential impacts in Southern Europe. Nat. Hazards Earth. Syst. Sci. 14 : 3005-3014.  https://doi.org/10.5194/nhess-14-3005-2014
  12. Chanthini, K. M. P., S. Senthil-Nathan, V. Stanley-Raja, A. Thanigaivel, S. Karthi, H. Sivanesh, N. S. Sundar, R. Palanikani, and R. Soranam. 2019. Chaetomorpha antennina (Bory) Kutzing derived seaweed liquid fertilizers as prospective bio-stimulant for Lycopersicon esculentum (Mill). Biocatal. Agric. Biotechnol. 20 : 101190. 
  13. Chouliaras, V., M. Tasioula, C. Chatzissavvidis, I. Therios, and E. Tsabolatidou. 2009. The effects of a seaweed extract in addition to nitrogen and boron fertilization on productivity, fruit maturation, leaf nutritional status and oil quality of the olive (Olea europaea L.) cultivar Koroneiki. J. Sci. Food Agri. 89 : 984-988.  https://doi.org/10.1002/jsfa.3543
  14. Craigie, J. S. 2011. Seaweed extract stimuli in plant science and agriculture. J. Appl. Phycol. 23 : 371-393.  https://doi.org/10.1007/s10811-010-9560-4
  15. Cuellar-Ortiz, S. M., M. De La Paz Arrieta-Montiel, J. Acosta-Gallegos, and A. A. Covarrubias. 2008. Relationship between carbohydrate partitioning and drought resistance in common bean. Plant Cell Environ. 31 : 1399-1409.  https://doi.org/10.1111/j.1365-3040.2008.01853.x
  16. Demir, N., B. Dural, and K. Yildirimm. 2006. Effect of seaweed suspensions on seed germination of tomato, pepper and aubergine. J. Biol. Sci. 6 : 1130-1133.  https://doi.org/10.3923/jbs.2006.1130.1133
  17. Du, Z. and W. J. Bramlage. 1992. Modified thiobarbituric acid assay measuring lipid oxidation in sugar-rich plant tissue extracts. J. Agric. Food Chem. 40 : 1566-1570.  https://doi.org/10.1021/jf00021a018
  18. Elstner, E. F. and A. Heupel. 1976. Inhibition of nitrite formation from hydroxylammonium chloride: a simple assay for superoxide dismutase. Anal. Biochem. 70 : 616-620.  https://doi.org/10.1016/0003-2697(76)90488-7
  19. Fan, D., D. M. Hodges, A. T. Critchley, and B. Prithiviraj. 2013. A commercial extract of brown macroalga (Ascophyllum nodosum) affects yield and the nutritional quality of spinach in vitro. Commun. Soil Sci. Plant Anal. 44 : 1873-1884.  https://doi.org/10.1080/00103624.2013.790404
  20. Farooq, M., A. Wahid, N. Kobayashi, D. Fujita, and S. M. A. Basra. 2009. Plant drought stress: Effects, mechanisms and management. Agron. Sustain. Dev. 29 : 185-212.  https://doi.org/10.1051/agro:2008021
  21. Gill, S. S. and N. Tuteja. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48 : 909-930.  https://doi.org/10.1016/j.plaphy.2010.08.016
  22. Gupta, A., A. Rico-Medina, and A. I. Cano-Delgado. 2020. The physiology of plant responses to drought. Sci. 368 : 266-269 https://doi.org/10.1126/science.aaz7614
  23. Hadiarto, T. and L. S. P. Tran. 2010. Progress studies of drought-responsive genes in rice. Plant Cell Rep. 30 : 297-310.  https://doi.org/10.1007/s00299-010-0956-z
  24. Haimeirong, F. Kubota, and Y. Yoshimura. 2002. Estimation of photosynthetic activity from the electron transport rate of photosystem 2 in a film-sealed leaf of sweet potato, Ipomoea batatas Lam. Photosynthetica. 40 : 337-341.  https://doi.org/10.1023/A:1022610621721
  25. Hanson, A. D., C. E. Nelson, and E. H. Everson. 1977. Evaluation of free proline accumulation as an index of drought resistance using two contrasting barley cultivars. Crop Sci. 17 : 720-726  https://doi.org/10.2135/cropsci1977.0011183X001700050012x
  26. Hasanuzzaman, M., M. A. Hossain, and M. Fujita. 2011. Nitric oxide modulates antioxidant defense and the methylglyoxal detoxification system and reduces salinity-induced damage of wheat seedlings. Plant Biotechnol. Rep. 5 : 353-365.  https://doi.org/10.1007/s11816-011-0189-9
  27. Hernandez, J. A., A. Jimene, P. Mullineaux, F. Sevilla. 2000. Tolerance of pea (Pisum sativum L.) to long term stress is associated with induction of antioxidant defences. Plant Cell Environ. 23: 853-862.  https://doi.org/10.1046/j.1365-3040.2000.00602.x
  28. Hiscox, J. D. and G. F. Israelstam. 1979. A method for the extraction of chlorophyll from leaf tissue without maceration. Can. J. Bot. 57 : 1332-1334  https://doi.org/10.1139/b79-163
  29. Jana, S. and M. A. Choudhuri. 1982. Glycolate metabolism of three submerged aquatic angiosperms during aging. Aquat. Bot. 12 : 345-354.  https://doi.org/10.1016/0304-3770(82)90026-2
  30. Jang, S. J. 2017. Control of diseases, insects, and weeds and growth promotion of crops by useful plant extracts (Ph.D. dissertation). South Korea: Sunchon National University p. 205. 
  31. Jannin, L., M. Arkoun, P. Etienne, P. Laine, D. Goux, M. Garnica, M. Fuentes, S. S. Francisco, R. Baigorri, and F. Cruz. 2013. Brassica napus growth is promoted by Ascophyllum nodosum (L.) Le Jol. seaweed extract: microarray analysis and physiological characterization of N, C, and S metabolisms. J. Plant Growth Regul. 32 : 31-52.  https://doi.org/10.1007/s00344-012-9273-9
  32. Khan, S. H., A. Khan, U. Litaf, A. S. Shah, M. A. Khan, M. Bilal, and M. U. Ali. 2015. Effect of drought stress on tomato cv. Bombino. J. Food Process. Technol. 6 : 7. 
  33. Khan, W., U. P. Rayirath, S. Subramanian, M. N. Jithesh, P. Rayorath, D. M. Hodges, A. T. Critchley, J. S. Craigie, J. Norrie, and B. Prithiviraj. 2009. Seaweed extracts as biostimulants of plant growth and development. J. Plant Growth Regul. 28 : 386-399.  https://doi.org/10.1007/s00344-009-9103-x
  34. Layek, J., A. Das, R. G. Idapuganti, D. Sarkar, A. Ghosh, S. T. Zodape, R. Lal, G. S. Yavad, A. S. Panwar, S. Ngachan, and R. S. Meena. 2018. Seaweed extract as organic bio-stimulant improves productivity and quality of rice in eastern Himalayas. J. Appl. Phycol. 30 : 547-558.  https://doi.org/10.1007/s10811-017-1225-0
  35. Lobell, D. B., M. Banziger, C. Magorokosho, and B. Vivek. 2011. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat. Clim. Chang. 1 : 42-45.  https://doi.org/10.1038/nclimate1043
  36. Lobell, D. B., M. J. Roberts, W. Schlenker, N. Braun, B. B. Little, R. M. Rejesus, and G. L. Hammer. 2014. Greater sensitivity to drought accompanies maize yield increase in the US Midwest. Sci. 344 : 516-519.  https://doi.org/10.1126/science.1251423
  37. Lorenzo, P., P. Souza-Alonso, A. Guisande-Collazob, and H. Freitasa. 2019. Influence of Acacia dealbata Link bark extracts on the growth of Allium cepa L. plants under high salinity conditions. J. Sci. Food Agric. 99 : 4072-4081.  https://doi.org/10.1002/jsfa.9637
  38. Mancuso, S., E. Azzarello, S. Mugnai, and X. Briand. 2006. Marine bioactive substances (IPA extract) improve foliar ion uptake and water stress tolerance in potted Vitis vinifera plants. Adv. Hortic. Sci. 20 : 156-161. 
  39. Manna, D., A. Sarkar, and T. K. Maity. 2012. Impact of biozyme on growth, yield and quality of chilli (Capsicum annuum L.). J. Crop Weed. 8 : 40-43. 
  40. Miyan, M. A. 2015. Droughts in Asian least developed countries: Vulnerability and sustainability. Weather Clim. Extrem. 7 : 8-23.  https://doi.org/10.1016/j.wace.2014.06.003
  41. Moon, G. S., B. M. Ryu, and M. J. Lee. 2003. Components and antioxidant activities of Buchu (Chinese chives) harvested at different times. Korean J. Food. Sci. Technol. 35 : 493-498. 
  42. Morsy, S. M., E. A. Drgham, and G. M. Mohamed. 2009. Effect of garlic and onion extracts or their intercropping on suppressing damping-off and powdery mildew diseases and growth characteristics of cucumber. Egyptian. J. Phytopathol. 37 : 35-46. 
  43. Mostajeran, A. and V. Rahimi-Eichi. 2009. Effects of drought stress on growth and yield of rice (Oryza sativa L.) cultivars and accumulation of proline and soluble sugars in sheaths and blades of their different ages leaves. Am.-Eurasian J. Agric. Environ. Sci. 5 : 264-272. 
  44. Nezhadahmadi, A., Z. H. Prodhan, and G. Faruq. 2013. Drought tolerance in wheat. Sci. World. J. 610721. 
  45. Nounjan, N. and P. Theerakulpisut. 2012. Effects of exogenous proline and trehalose on physiological responses in rice seedlings during salt-stress and after recovery. Plant Soil Environ. 58 : 309-315.  https://doi.org/10.17221/762/2011-PSE
  46. Papworth, A., M. Maslin, and S. Randalls. 2015. Is climate change the greatest threat to global health? Geogr. J. 181 : 413-422.  https://doi.org/10.1111/geoj.12127
  47. Porter, P., W. L. Banwart, and J. J. Hassett. 1985. Phenolic acids and flavonoids in soybean root and leaf extracts. Environ. Exp. Bot. 26 : 65-73.  https://doi.org/10.1016/0098-8472(86)90054-7
  48. Qadir, M., E. Quillerou, V. Nangia, G. Murtaza, M. Singh, R. J. Thomas, P. Drechsel, and A. D. Noble. 2014. Economics of salt-induced land degradation and restoration. Nat. Resour. Forum. 38 : 282-295.  https://doi.org/10.1111/1477-8947.12054
  49. Rahdari, P., S. M. Hoseini, S. Tavakoli. 2012. The studying effect of drought stress on germination, proline, sugar, lipid, protein and chlorophyll content in Purslane (Portulaca oleraceae L.) leaves. J. Med. Plants Res. 6 : 1539-1547.  https://doi.org/10.5897/JMPR11.698
  50. Rao, D. E. and K. V. Chaitanya. 2016. Photosynthesis and anti-oxidative defense mechanisms in deciphering drought stress tolerance of crop plants. Biol. Plant. 60 : 201-218.  https://doi.org/10.1007/s10535-016-0584-8
  51. Rasheed, A., M. U. Hassan, M. Aamer, J. M. Bian, Z. R. Xu, X. F. He, and A. M. Wu. 2020. Iron toxicity, tolerance and quantitative trait loci mapping in rice: A review. Appl. Ecol. Environ. Res. 18 : 7483-7498.  https://doi.org/10.15666/aeer/1806_74837498
  52. Rosa, M., C. Prado, G. Podazza, R. Interdonato, J. A. Gonzalez, M. Hilal, and F. E. Prado. 2009. Soluble sugars: Metabolism, sensing and abiotic stress: A complex network in the life of plants. Plant Signal. Behav. 4 : 388-393.  https://doi.org/10.4161/psb.4.5.8294
  53. Santaniello, A., A. Scartazza, F. Gresta, E. Loreti, A. Biasone, D. Di Tommaso, A. Piaggesi, and P. Perata. 2017. Ascophyllum nodosum seaweed extract alleviates drought stress in Arabidopsis by affecting photosynthetic performance and related gene expression. Front. Plant Sci. 8 : 1362 
  54. Senaratna, T., D. Touchell, E. Bunn, and K. Dixon. 2000. Acetyl salicylic acid (aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plant. Plant Growth Regul. 30 : 157-161.  https://doi.org/10.1023/A:1006386800974
  55. Sharma, A. and B. Zheng. 2019. Melatonin mediated regulation of drought stress: Physiological and molecular aspects. Plants. 8 : 190. 
  56. Sharma, L., M. Banerjee, G. C. Malik, V. A. K. Gopalakrishnan, S. T. Zodape, and A. Ghosh. 2017. Sustainable agro-technology for enhancement of rice production in the red and lateritic soils using seaweed based biostimulants. J. Clean. Prod. 149 : 968-975.  https://doi.org/10.1016/j.jclepro.2017.02.153
  57. Shukla, P. S., K. Shotton, E. Norman, W. Neily, A. T. Critchley, and B. Prithiviraj. 2017. Seaweed extracts improve drought tolerance of soybeans by regulating stress-response genes. AoB Plants 10 : plx051. 
  58. Sivasankari, S., V. Venkatesalu, M. Anantharaj, and M. Chandrasekaran. 2006. Effect of seaweed extracts on the growth and biochemical constituents of Vigna sinensis. Bioresour. Technol. 97 : 1745-1751.  https://doi.org/10.1016/j.biortech.2005.06.016
  59. Spinelli, F., G. Fiori, M. Noferini, M. Sprocatti, and G. Costa. 2010. A novel type of seaweed extract as a natural alternative to the use of iron chelates in strawberry production. Sci. Hortic. 125 : 263-269.  https://doi.org/10.1016/j.scienta.2010.03.011
  60. Stutte, C. A. and H. Park. 1973. Effects of nitrogen source on PRE-point and free amino acids in soybean leaves different in phosphorus sensitivity. Kor. J. Soil Sci. Fertil. 6 : 239-244. 
  61. Szabados, L. and A. Savoure. 2010. Proline: A multifunctional amino acid. Trends Plant Sci. 15 : 89-97.  https://doi.org/10.1016/j.tplants.2009.11.009
  62. Tanou, G., C. Job, L. Rajjou, E. Arc, M. Belghazi, G. Diamantidis, A. Molassiotis, and D. Job. 2009. Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity. Plant J. 60 : 795-804.  https://doi.org/10.1111/j.1365-313X.2009.04000.x
  63. Wang, X., H. Liu, F. Yu, B. Hu, Y. Jia, H. Sha, and H. Zhao. 2019. Differential activity of the antioxidant defence system and alterations in the accumulation of osmolyte and reactive oxygen species under drought stress and recovery in rice (Oryza sativa L.) tillering. Sci. Rep. 9 : 8543. 
  64. Xu, W., K. Cui, A. Xu, L. Nie, J. Huang, and S. Peng. 2015. Drought stress condition increases root to shoot ratio via alteration of carbohydrate partitioning and enzymatic activity in rice seedlings. Acta Physiol. Plant. 37 : 9. 
  65. Yasmeen, A., S. M. A. Basra, M. Farooq, H. Rehman, N. Hussain, and H. R. Athar. 2013. Exogenous application of moringa leaf extract modulates the antioxidant enzyme system to improve wheat performance under saline conditions. Plant Growth Regul. 9 : 225-233.  https://doi.org/10.1007/s10725-012-9764-5
  66. Zhang, J. and M. B. Kirkham. 1996. Antioxidant responses to drought in sunflower and sorghum seedlings. New Phytol. 132 : 361-373.  https://doi.org/10.1111/j.1469-8137.1996.tb01856.x
  67. Zheng, S., J. Jiang, M. He, S. Zou, and C. Wang. 2016. Effect of kelp waste extracts on the growth and development of pakchoi (Brassica chinensis L.). Sci. Rep. 6 : 38683. 
  68. Zhu, R., F. Y. Wu, S. Zhou, T. Hu, J. Huang, and Y. Gao. 2020. Cumulative effects of drought-flood abrupt alternation on the photosynthetic characteristics of rice. Environ. Exp. Bot. 169 : 103901. 
  69. Zou, P., X. Lu, H. Zhao, Y. Yuan, L. Meng, C. Zhang, Y. Li. 2019. Polysaccharides derived from the brown algae Lessonia nigrescens enhance salt stress tolerance to wheat seedlings by enhancing the antioxidant system and modulating intracellular ion concentration. Front. Plant. Sci. 10 : 48.