DOI QR코드

DOI QR Code

A comparison study of pathological features and drug efficacy between Drosophila models of C9orf72 ALS/FTD

  • Davin Lee (Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Hae Chan Jeong (Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Seung Yeol Kim (SK Biopharmaceuticals Co., Ltd.) ;
  • Jin Yong Chung (SK Biopharmaceuticals Co., Ltd.) ;
  • Seok Hwan Cho (SK Biopharmaceuticals Co., Ltd.) ;
  • Kyoung Ah Kim (Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Jae Ho Cho (Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Byung Su Ko (Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • In Jun Cha (Brain Research Policy Center, Korea Brain Research Institute) ;
  • Chang Geon Chung (Department of Neurology, Johns Hopkins University School of Medicine) ;
  • Eun Seon Kim (Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Sung Bae Lee (Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST))
  • Received : 2023.07.28
  • Accepted : 2023.11.13
  • Published : 2024.01.31

Abstract

Amyotrophic lateral sclerosis is a devastating neurodegenerative disease with a complex genetic basis, presenting both in familial and sporadic forms. The hexanucleotide (G4C2) repeat expansion in the C9orf72 gene, which triggers distinct pathogenic mechanisms, has been identified as a major contributor to familial and sporadic Amyotrophic lateral sclerosis cases. Animal models have proven pivotal in understanding these mechanisms; however, discrepancies between models due to variable transgene sequence, expression levels, and toxicity profiles complicate the translation of findings. Herein, we provide a systematic comparison of 7 publicly available Drosophila transgenes modeling the G4C2 expansion under uniform conditions, evaluating variations in their toxicity profiles. Further, we tested 3 previously characterized disease-modifying drugs in selected lines to uncover discrepancies among the tested strains. Our study not only deepens our understanding of the C9orf72 G4C2 mutations but also presents a framework for comparing constructs with minute structural differences. This work may be used to inform experimental designs to better model disease mechanisms and help guide the development of targeted interventions for neurodegenerative diseases, thus bridging the gap between model-based research and therapeutic application.

Keywords

Acknowledgement

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (2022R1A4A2000703 and 2021R1A2C1003817) and the Korea Brain Research Institute Research Program (23-BR-03-02), funded by the Ministry of Science and ICT, Republic of Korea and the Korea Health Technology R&D Project through the Korea Health Industry Development Institute and Korea Dementia Research Center (KDRC), funded by the Ministry of Health & Welfare and Ministry of Science and ICT, Republic of Korea (HU21C0027)

References

  1. Ash, P.E., Bieniek, K.F., Gendron, T.F., Caulfield, T., Lin, W.L., Dejesus-Hernandez, M., van Blitterswijk, M.M., Jansen-West, K., Paul, J.W., 3rd, Rademakers, R., et al. (2013). Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS. Neuron, 77, 639-646. https://doi.org/10.1016/j.neuron.2013.02.004
  2. Batra, R., and Lee, C.W. (2017). Mouse models of C9orf72 hexanucleotide repeat expansion in amyotrophic lateral sclerosis/ frontotemporal dementia. Front. Cell. Neurosci. 11, 196. https://doi.org/10.3389/fncel.2017.00196
  3. Boeynaems, S., Bogaert, E., Michiels, E., Gijselinck, I., Sieben, A., Jovicic, A., De Baets, G., Scheveneels, W., Steyaert, J., Cuijt, I., et al. (2016). Drosophila screen connects nuclear transport genes to DPR pathology in c9ALS/FTD. Sci. Rep. 6, 20877. https://doi.org/10.1038/srep20877
  4. Boivin, M., Pfister, V., Gaucherot, A., Ruffenach, F., Negroni, L., Sellier, C., and Charlet-Berguerand, N. (2020). Reduced autophagy upon C9ORF72 loss synergizes with dipeptide repeat protein toxicity in G4C2 repeat expansion disorders. EMBO J. 39, Article e100574. https://doi.org/10.15252/embj.2018100574
  5. Byrne, S., Heverin, M., Elamin, M., Bede, P., Lynch, C., Kenna, K., MacLaughlin, R., Walsh, C., Al Chalabi, A., and Hardiman, O. (2013). Aggregation of neurologic and neuropsychiatric disease in amyotrophic lateral sclerosis kindreds: a population-based case-control cohort study of familial and sporadic amyotrophic lateral sclerosis. Ann. Neurol. 74, 699-708. https://doi.org/10.1002/ana.23969
  6. Cho, J.H., Jo, M.G., Kim, E.S., Lee, N.Y., Kim, S.H., Chung, C.G., Park, J.H., and Lee, S.B. (2022). CBP-mediated acetylation of importin alpha mediates calcium-dependent nucleocytoplasmic transport of selective proteins in Drosophila neurons. Mol. Cells, 45, 855-867. https://doi.org/10.14348/molcells.2022.0104
  7. Chou, C.C., Zhang, Y., Umoh, M.E., Vaughan, S.W., Lorenzini, I., Liu, F., Sayegh, M., Donlin-Asp, P.G., Chen, Y.H., Duong, D.M., et al. (2018). TDP-43 pathology disrupts nuclear pore complexes and nucleocytoplasmic transport in ALS/FTD. Nat. Neurosci. 21, 228-239. https://doi.org/10.1038/s41593-017-0047-3
  8. Chung, C.G., Kwon, M.J., Jeon, K.H., Hyeon, D.Y., Han, M.H., Park, J.H., Cha, I.J., Cho, J.H., Kim, K., Rho, S., et al. (2017). Golgi outpost synthesis impaired by toxic polyglutamine proteins contributes to dendritic pathology in neurons. Cell Rep. 20, 356-369. https://doi.org/10.1016/j.celrep.2017.06.059
  9. Cunningham, K.M., Maulding, K., Ruan, K., Senturk, M., Grima, J.C., Sung, H., Zuo, Z., Song, H., Gao, J., Dubey, S., et al. (2020). TFEB/Mitf links impaired nuclear import to autophagolysosomal dysfunction in C9-ALS. Elife, 9. https://doi.org/10.7554/eLife.59419
  10. Dafinca, R., Scaber, J., Ababneh, N., Lalic, T., Weir, G., Christian, H., Vowles, J., Douglas, A.G., Fletcher-Jones, A., Browne, C., et al. (2016). C9orf72 hexanucleotide expansions are associated with altered endoplasmic reticulum calcium homeostasis and stress granule formation in induced pluripotent stem cell-derived neurons from patients with amyotrophic lateral sclerosis and frontotemporal dementia. Stem Cells, 34, 2063-2078. https://doi.org/10.1002/stem.2388
  11. DeJesus-Hernandez, M., Mackenzie, I.R., Boeve, B.F., Boxer, A.L., Baker, M., Rutherford, N.J., Nicholson, A.M., Finch, N.A., Flynn, H., Adamson, J., et al. (2011). Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron, 72, 245-256. https://doi.org/10.1016/j.neuron.2011.09.011
  12. Devenney, E., Hornberger, M., Irish, M., Mioshi, E., Burrell, J., Tan, R., Kiernan, M.C., and Hodges, J.R. (2014). Frontotemporal dementia associated with the C9ORF72 mutation: a unique clinical profile. JAMA Neurol. 71, 331-339. https://doi.org/10.1001/jamaneurol.2013.6002
  13. Dubey, S.K., Maulding, K., Sung, H., and Lloyd, T.E. (2022). Nucleoporins are degraded via upregulation of ESCRT-III/Vps4 complex in Drosophila models of C9-ALS/FTD. Cell Rep. 40, Article 111379. https://doi.org/10.1016/j.celrep.2022.111379
  14. Gao, J., Mewborne, Q.T., Girdhar, A., Sheth, U., Coyne, A.N., Punathil, R., Kang, B.G., Dasovich, M., Veire, A., DeJesus Hernandez, M., et al. (2022). Poly(ADP-ribose) promotes toxicity of C9ORF72 arginine-rich dipeptide repeat proteins. Sci. Transl. Med. 14, Article eabq3215. https://doi.org/10.1126/scitranslmed.abq3215
  15. Gasset-Rosa, F., Lu, S., Yu, H., Chen, C., Melamed, Z., Guo, L., Shorter, J., Da Cruz, S., and Cleveland, D.W. (2019). Cytoplasmic TDP43 de-mixing independent of stress granules drives inhibition of nuclear import, loss of nuclear TDP-43, and cell death. Neuron, 102, 339-357. https://doi.org/10.1016/j.neuron.2019.02.038
  16. Goodman, L.D., Prudencio, M., Kramer, N.J., Martinez-Ramirez, L.F., Srinivasan, A.R., Lan, M., Parisi, M.J., Zhu, Y., Chew, J., Cook, C.N., et al. (2019). Toxic expanded GGGGCC repeat transcription is mediated by the PAF1 complex in C9orf72-associated FTD. Nat. Neurosci. 22, 863-874. https://doi.org/10.1038/s41593-019-0396-1
  17. Goodman, L.D., Prudencio, M., Srinivasan, A.R., Rifai, O.M., Lee, V.M., Petrucelli, L., and Bonini, N.M. (2019). eIF4B and eIF4H mediate GR production from expanded G4C2 in a Drosophila model for C9orf72-associated ALS. Acta Neuropathol. Commun. 7, Article 62. https://doi.org/10.1186/s40478-019-0711-9
  18. Haeusler, A.R., Donnelly, C.J., and Rothstein, J.D. (2016). The expanding biology of the C9orf72 nucleotide repeat expansion in neurodegenerative disease. Nat. Rev. Neurosci. 17, 383-395. https://doi.org/10.1038/nrn.2016.38
  19. Kearse, M.G., Green, K.M., Krans, A., Rodriguez, C.M., Linsalata, A.E., Goldstrohm, A.C., and Todd, P.K. (2016). CGG repeat-associated nonAUG translation utilizes a Cap-dependent scanning mechanism of initiation to produce toxic proteins. Mol. Cell, 62, 314-322. https://doi.org/10.1016/j.molcel.2016.02.034
  20. Kim, E.S., Chung, C.G., Park, J.H., Ko, B.S., Park, S.S., Kim, Y.H., Cha, I.J., Kim, J., Ha, C.M., Kim, H.J., et al. (2021). C9orf72-associated arginine-rich dipeptide repeats induce RNA-dependent nuclear accumulation of Staufen in neurons. Hum. Mol. Genet. 30, 1084-1100. https://doi.org/10.1093/hmg/ddab089
  21. Kramer, N.J., Carlomagno, Y., Zhang, Y.J., Almeida, S., Cook, C.N., Gendron, T.F., Prudencio, M., Van Blitterswijk, M., Belzil, V., Couthouis, J., et al. (2016). Spt4 selectively regulates the expression of C9orf72 sense and antisense mutant transcripts. Science, 353, 708-712. https://doi.org/10.1126/science.aaf7791
  22. Kwiatkowski, T.J., Jr., Bosco, D.A., Leclerc, A.L., Tamrazian, E., Vanderburg, C.R., Russ, C., Davis, A., Gilchrist, J., Kasarskis, E.J., Munsat, T., et al. (2009). Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science, 323, 1205-1208. https://doi.org/10.1126/science.1166066
  23. Lee, J., Song, X., Hyun, B., Jeon, C.O., and Hyun, S. (2023). Drosophila gut immune pathway suppresses host development-promoting effects of acetic acid bacteria. Mol. Cells, 46, 637-653. https://doi.org/10.14348/molcells.2023.0141
  24. Lee, K.H., Zhang, P., Kim, H.J., Mitrea, D.M., Sarkar, M., Freibaum, B.D., Cika, J., Coughlin, M., Messing, J., Molliex, A., et al. (2016). C9orf72 dipeptide repeats impair the assembly, dynamics, and function of membrane-less organelles. Cell, 167, 774-788. https://doi.org/10.1016/j.cell.2016.10.002
  25. Lee, Y., Kim, J., Kim, H., Han, J.E., Kim, S., Kang, K.H., Kim, D., Kim, J.M., and Koh, H. (2022). Pyruvate dehydrogenase kinase protects dopaminergic neurons from oxidative stress in drosophila DJ-1 null mutants. Mol. Cells, 45, 454-464. https://doi.org/10.14348/molcells.2022.5002
  26. Lee, Y.B., Chen, H.J., Peres, J.N., Gomez-Deza, J., Attig, J., Stalekar, M., Troakes, C., Nishimura, A.L., Scotter, E.L., Vance, C., et al. (2013). Hexanucleotide repeats in ALS/FTD form length-dependent RNA foci, sequester RNA binding proteins, and are neurotoxic. Cell Rep. 5, 1178-1186. https://doi.org/10.1016/j.celrep.2013.10.049
  27. Li, C., Wu, B., Chen, S., Hao, K., Yang, J., Cao, H., Yang, S., Wu, Z.S., and Shen, Z. (2021). Structural requirement of G-quadruplex/aptamer-combined DNA macromolecule serving as efficient drug carrier for cancer-targeted drug delivery. Eur. J. Pharm. Biopharm. 159, 221-227. https://doi.org/10.1016/j.ejpb.2020.11.021
  28. Lin, M.J., Cheng, C.W., and Shen, C.K. (2011). Neuronal function and dysfunction of Drosophila dTDP. PLoS One, 6, Article e20371. https://doi.org/10.1371/journal.pone.0020371
  29. Liu, H., Lu, Y.N., Paul, T., Periz, G., Banco, M.T., Ferre-D'Amare, A.R., Rothstein, J.D., Hayes, L.R., Myong, S., and Wang, J. (2021). A helicase unwinds hexanucleotide repeat RNA G-quadruplexes and facilitates repeat-associated non-AUG translation. J. Am. Chem. Soc. 143, 7368-7379. https://doi.org/10.1021/jacs.1c00131
  30. Majounie, E., Renton, A.E., Mok, K., Dopper, E.G., Waite, A., Rollinson, S., Chio, A., Restagno, G., Nicolaou, N., Simon-Sanchez, J., et al. (2012). Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurol. 11, 323-330. https://doi.org/10.1016/S1474-4422(12)70043-1
  31. McEachin, Z.T., Parameswaran, J., Raj, N., Bassell, G.J., and Jiang, J. (2020). RNA-mediated toxicity in C9orf72 ALS and FTD. Neurobiol. Dis. 145, Article 105055. https://doi.org/10.1016/j.nbd.2020.105055
  32. Mishra, S.K., Shankar, U., Jain, N., Sikri, K., Tyagi, J.S., Sharma, T.K., Mergny, J.L., and Kumar, A. (2019). Characterization of G-quadruplex motifs in espB, espK, and cyp51 genes of Mycobacterium tuberculosis as potential drug targets. Mol. Ther. Nucleic Acids, 16, 698-706. https://doi.org/10.1016/j.omtn.2019.04.022
  33. Mizielinska, S., Gronke, S., Niccoli, T., Ridler, C.E., Clayton, E.L., Devoy, A., Moens, T., Norona, F.E., Woollacott, I.O.C., Pietrzyk, J., et al. (2014). C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins. Science, 345, 1192-1194. https://doi.org/10.1126/science.1256800
  34. Park, J.H., Chung, C.G., Park, S.S., Lee, D., Kim, K.M., Jeong, Y., Kim, E.S., Cho, J.H., Jeon, Y.M., Shen, C.J., et al. (2020). Cytosolic calcium regulates cytoplasmic accumulation of TDP-43 through Calpain-A and Importin alpha3. Elife, 9. https://doi.org/10.7554/eLife.60132
  35. Pradhan, R.N., Shrestha, B., and Lee, Y. (2023). Molecular basis of hexanoic acid taste in Drosophila melanogaster. Mol. Cells, 46, 451-460. https://doi.org/10.14348/molcells.2023.0035
  36. Rosen, D.R., Siddique, T., Patterson, D., Figlewicz, D.A., Sapp, P., Hentati, A., Donaldson, D., Goto, J., O'Regan, J.P., Deng, H.X., et al. (1993). Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature, 362, 59-62. https://doi.org/10.1038/362059a0
  37. Ryu, T.H., Subramanian, M., Yeom, E., and Yu, K. (2022). The promininlike gene expressed in a subset of dopaminergic neurons regulates locomotion in Drosophila. Mol. Cells, 45, 640-648. https://doi.org/10.14348/molcells.2022.0006
  38. Schmidt, J., Braggio, E., Kortuem, K.M., Egan, J.B., Zhu, Y.X., Xin, C.S., Tiedemann, R.E., Palmer, S.E., Garbitt, V.M., McCauley, D., et al. (2013). Genome-wide studies in multiple myeloma identify XPO1/CRM1 as a critical target validated using the selective nuclear export inhibitor KPT-276. Leukemia, 27, 2357-2365. https://doi.org/10.1038/leu.2013.172
  39. Shatunov, A., Mok, K., Newhouse, S., Weale, M.E., Smith, B., Vance, C., Johnson, L., Veldink, J.H., van Es, M.A., van den Berg, L.H., et al. (2010). Chromosome 9p21 in sporadic amyotrophic lateral sclerosis in the UK and seven other countries: a genome-wide association study. Lancet Neurol. 9, 986-994. https://doi.org/10.1016/S1474-4422(10)70197-6
  40. Shi, Y., Lin, S., Staats, K.A., Li, Y., Chang, W.H., Hung, S.T., Hendricks, E., Linares, G.R., Wang, Y., Son, E.Y., et al. (2018). Haploinsufficiency leads to neurodegeneration in C9ORF72 ALS/FTD human induced motor neurons. Nat. Med. 24, 313-325. https://doi.org/10.1038/nm.4490
  41. Solomon, D.A., Stepto, A., Au, W.H., Adachi, Y., Diaper, D.C., Hall, R., Rekhi, A., Boudi, A., Tziortzouda, P., Lee, Y.B., et al. (2018). A feedback loop between dipeptide-repeat protein, TDP-43 and karyopherin-alpha mediates C9orf72-related neurodegeneration. Brain, 141, 2908-2924. https://doi.org/10.1093/brain/awy241
  42. Tran, H., Almeida, S., Moore, J., Gendron, T.F., Chalasani, U., Lu, Y., Du, X., Nickerson, J.A., Petrucelli, L., Weng, Z., et al. (2015). Differential toxicity of nuclear RNA foci versus dipeptide repeat proteins in a Drosophila model of C9ORF72 FTD/ALS. Neuron, 87, 1207-1214. https://doi.org/10.1016/j.neuron.2015.09.015
  43. Tseng, Y.J., Sandwith, S.N., Green, K.M., Chambers, A.E., Krans, A., Raimer, H.M., Sharlow, M.E., Reisinger, M.A., Richardson, A.E., Routh, E.D., et al. (2021). The RNA helicase DHX36-G4R1 modulates C9orf72 GGGGCC hexanucleotide repeat-associated translation. J. Biol. Chem. 297, Article 100914. https://doi.org/10.1016/j.jbc.2021.100914
  44. Van Daele, S.H., Moisse, M., van Vugt, J., Zwamborn, R.A.J., van der Spek, R., van Rheenen, W., Van Eijk, K., Kenna, K., Corcia, P., Vourc'h, P., et al. (2023). Genetic variability in sporadic amyotrophic lateral sclerosis. Brain, 146, 3760-3769. https://doi.org/10.1093/brain/awad120
  45. Vanneste, J., and Van Den Bosch, L. (2021). The role of nucleocytoplasmic transport defects in amyotrophic lateral sclerosis. Int. J. Mol. Sci. 22. https://doi.org/10.3390/ijms222212175
  46. Wang, Z.F., Ursu, A., Childs-Disney, J.L., Guertler, R., Yang, W.Y., Bernat, V., Rzuczek, S.G., Fuerst, R., Zhang, Y.J., Gendron, T.F., et al. (2019). The hairpin form of r(G(4)C(2))(exp) in c9ALS/FTD is repeat-associated non-ATG translated and a target for bioactive small molecules. Cell. Chem. Biol. 26, 179-190. https://doi.org/10.1016/j.chembiol.2018.10.018
  47. Wen, X., An, P., Li, H., Zhou, Z., Sun, Y., Wang, J., Ma, L., and Lu, B. (2020). Tau accumulation via reduced autophagy mediates GGGGCC repeat expansion-induced neurodegeneration in Drosophila model of ALS. Neurosci. Bull. 36, 1414-1428. https://doi.org/10.1007/s12264-020-00518-2
  48. Wen, X., Tan, W., Westergard, T., Krishnamurthy, K., Markandaiah, S.S., Shi, Y., Lin, S., Shneider, N.A., Monaghan, J., Pandey, U.B., et al. (2014). Antisense proline-arginine RAN dipeptides linked to C9ORF72-ALS/FTD form toxic nuclear aggregates that initiate in vitro and in vivo neuronal death. Neuron, 84, 1213-1225. https://doi.org/10.1016/j.neuron.2014.12.010
  49. Xu, Z., Poidevin, M., Li, X., Li, Y., Shu, L., Nelson, D.L., Li, H., Hales, C.M., Gearing, M., Wingo, T.S., et al. (2013). Expanded GGGGCC repeat RNA associated with amyotrophic lateral sclerosis and frontotemporal dementia causes neurodegeneration. Proc. Natl. Acad. Sci. U.S.A. 110, 7778-7783. https://doi.org/10.1073/pnas.1219643110
  50. Yuva-Aydemir, Y., Almeida, S., Krishnan, G., Gendron, T.F., and Gao, F.B. (2019). Transcription elongation factor AFF2/FMR2 regulates expression of expanded GGGGCC repeat-containing C9ORF72 allele in ALS/FTD. Nat. Commun. 10, Article 5466. https://doi.org/10.1038/s41467-019-13477-8
  51. Zamiri, B., Reddy, K., Macgregor, R.B., Jr., and Pearson, C.E. (2014). TMPyP4 porphyrin distorts RNA G-quadruplex structures of the disease-associated r(GGGGCC)n repeat of the C9orf72 gene and blocks interaction of RNA-binding proteins. J. Biol. Chem. 289, 4653-4659. https://doi.org/10.1074/jbc.C113.502336
  52. Zhang, K., Donnelly, C.J., Haeusler, A.R., Grima, J.C., Machamer, J.B., Steinwald, P., Daley, E.L., Miller, S.J., Cunningham, K.M., Vidensky, A., et al. (2015). The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature, 525, 56-61. https://doi.org/10.1038/nature14973
  53. Zu, T., Liu, Y., Banez-Coronel, M., Reid, T., Pletnikova, O., Lewis, J., Miller, T.M., Harms, M.B., Falchook, A.E., Subramony, S.H., et al. (2013). RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal dementia. Proc. Natl. Acad. Sci. U.S.A. 110, E4968-E4977. https://doi.org/10.1073/pnas.1315438110