DOI QR코드

DOI QR Code

Analysis of cavity expansion based on general strength criterion and energy theory

  • Chao Li (State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, China University of Mining and Technology) ;
  • Meng-meng Lu (State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, China University of Mining and Technology) ;
  • Bin Zhu (State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, China University of Mining and Technology) ;
  • Chao Liu (State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, China University of Mining and Technology) ;
  • Guo-Yao Li (State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, China University of Mining and Technology) ;
  • Pin-Qiang Mo (State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, China University of Mining and Technology)
  • 투고 : 2023.11.25
  • 심사 : 2024.03.04
  • 발행 : 2024.04.10

초록

This study presents an energy analysis for large-strain cavity expansion problem based on the general strength criterion and energy theory. This study focuses on the energy dissipation problem during the cavity expansion process, dividing the soil mass around the cavity into an elastic region and a plastic region. Assuming compliance with the small deformation theory in the elastic region and the large deformation theory in the plastic region, combined with the general strength criterion of soil mass and energy theory, the energy dissipation solution for cavity expansion problem is derived. Firstly, from an energy perspective, the process of cavity expansion in soil mass is described as an energy conversion process. The energy dissipation mechanism is introduced into the traditional analysis of cavity expansion, and a general analytical solution for cavity expansion related to energy is derived. Subsequently, based on this general analytical solution of cavity expansion, the influence of different strength criterion, large-strain, expansion radius, cavity shape and characteristics of soil mass on the stress distribution, displacement field and energy evolution around the cavity is studied. Finally, the effectiveness and reliability of theoretical solution is verified by comparing the results of typical pressure-expansion curves with existing literature algorithms. The results indicate that different strength criterion have a relatively small impact on the displacement and strain field around the cavity, but a significant impact on the stress distribution and energy evolution around the cavity.

키워드

과제정보

The authors thank Project 2022QN1019 supported by the Fundamental Research Funds for the Central Universities, and Doctor of entrepreneurship and innovation in Jiangsu Province (JSSCBS20221497), the Science and Technology Planning Project of Jiangsu Province (BK20231079), and the Foundation of State Key Laboratory of Mountain Bridge and Tunnel Engineering (Grant No. SKLBT-2213), the National Natural Science Foundation of China (Grant No. 52178374, 52209150, 52178373).

참고문헌

  1. Carter, J.P., Booker, J.R. and Yeung, S.K. (1986), "Cavity expansion in cohesive frictional soils", Geotechnique, 36(3), 349-358. https://doi.org/10.1680/geot.1986.36.3.349.
  2. Chen, S.L. Liu, K., Castro, J. and Sivasithamparam, N. (2018), "Discussion: undrained cylindrical cavity expansion in anisotropic critical state soils", Geotechnique, 69(11), 1-11, https://doi.org/10.1680/jgeot.18.D.009.
  3. Cheng, T., Yu, Z., Zheng J., Du, J., Zhang, Y., Garg, A. and Garg, A. (2018), "Improvement of the cavity expansion theory for the measurement of strain softening in over consolidated saturated clay", Measurement, 119, 156-166. https://doi.org/10.1016/j.measurement.2018.01.069.
  4. Cui, J., Rao, P., Wu, J. and Yang, Z. (2022), "Evaluation of long term shaft resistance of the reused driven pile in clay", Geomech. Eng., 29(2), 171-182. https://doi.org/10.12989/gae.2022.29.2.171.
  5. Durban, D. and Papanastasiou, P. (1997b), "Elastoplastic response of pressure sensitive solids, Int. J. Numer. Anal. Meth. Geomech., 21(7), 423-441. https://doi.org/10.1002/(SICI)1096-9853(199707)21:7(423::AID- NAG882)3.0.CO;2-T.
  6. Frikha, W. and Bouassida, M. (2013), "Cylindrical cavity expansion in elastoplastic medium with a variable potential flow", Int. J. Geomech., 13(1), 19-15. https://doi.org/0.1061/(ASCE)GM.1943-5622.0000166. 1061/(ASCE)GM.1943-5622.0000166
  7. Hughes, J.M.O., Wroth, C.P. and Windle, D. (1977), "Pressuremeter tests in sands", Geotechnique, 27(4), 455-472. https://doi.org/10.1680/geot.1977.27.4.455.
  8. Kumar, B. and Sahoo, J.P. (2023), "Stability assessment of unlined tunnels with semicircular arch and straight sides in anisotropic clay", Geomech. Eng., 35(2), 149-163. https://doi.org/10.12989/gae.2023.35.2.149.
  9. Lade, P.V. (1977), "Elasto-plastic stress-strain theory for cohesionless soil with curved yield surfaces", Int. J. Solids Struct., 13(11), 1019-1035. https://doi.org/10.1016/0020-7683(77)90073-7.
  10. Li, C. and Sheng, Y. (2022), "Large-strain analysis for cylindrical cavity contraction in strain-softening geomaterials", Int. J. Numer. Anal. Meth. Geomech., 46(16), 3012-3027. https://doi.org/10.1002/nag.3439.
  11. Li, G. Y., Mo, P.Q., Li, C., Hu, J., Zhuang, P.Z. and Yu, H.S. (2023), "Loading-unloading of spherical and cylindrical cavities in cohesive-frictional materials with arbitrary radially symmetric boundary conditions", Appl. Math. Model., 124, 488-508. https://doi.org/10.1016/j.apm.2023.07.037.
  12. Li, J. P., Li, L. and Sun, D. A. (2016). "Analysis of undrained cylindrical cavity expansion considering three-dimensional strength of soils", Int. J. Geomech., https://doi.org/10.1061/(ASCE)GM.1943-5622.0000650,04016017.
  13. Lukic, D.C., Prokic, A.D. and Brcic, S.V. (2014), "Stress state around cylindrical cavities in transversally isotropic rock mass", Geomech. Eng., 6(3), 213-233. https://doi.org/10.12989/gae.2014.6.3.213.
  14. Luo, W., Li, J., Zou, J., Zhang, P. and Rong, Y. (2022), "A novel simple solution to cavity expansion problem in crushable granular materials based on energy dissipation method", Int. J. Geomech., 22(2): 04021281. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002271.
  15. Matsuoka, H. and Nakai, T. (1974), "Stress-deformation and strength characteristics of soil under three different principal stresses." Proc. Jap. Soc. Civ. Eng., 23(2), 59-70. https://doi.org/10.2208/jscej1969.1974.23259.
  16. Matsuoka, H. and Sun, D.A. (1995), "Extension of spatially mobilized plane (SMP) to frictional and cohesive materials and its application to cemented sands", Soils Found., 35(4), 63-72. https://doi.org/10.3208/sandf.35.4_63.
  17. Matsuoka, N. (1981), "Prediction of plane strain strength for soils from triaxial compression", Proceedings of the 10th Int. Conf. Soil Mechan. Found. Engineer., Stockholm, Sweden: SMFE.
  18. Papanastasiou, P. and Durban, D. (1997a), "Elastoplastic analysis of cylindrical cavity problems in geomaterials", Int. J. Numer. Anal. Method. Geomech., 21(2), 133-149. https://doi.org/10.1002/(SICI)1096-9853(199702)21:2<133:AID-NAG866>3.0.CO;2-A.
  19. Papanastasiou, P. and Vardoulakis, I. (1989). "Bifurcation analysis of deep boreholes: II. Scale effect", Int. J. Numer. Anal. Meth. Geomech., 13(2), 183-198. https://doi.org/10.1002/nag.1610130206.
  20. Papanastasiou, P. and Vardoulakis, I. (1992), "Numerical treatment of progressive localization in relation to borehole stability", Int. J. Numer. Anal. Meth. Geomech., 16(6), 389-424. https://doi.org/10.1002/nag.1610160602.
  21. Patsalides, K. and Papanastasiou, P. (2019). "Influence of hardening and softening on limit pressure of cylindrical cavity expansion", Int. J. Geomech., 19(4), 04019011. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001366.
  22. Randolph, M.F., Carter, J.P. and Wroth., C.P. (1979), "Driven piles in clay-The effects of installation and subsequent consolidation", Geotechnique, 29(4), 361-393. https://doi.org/10.1680/geot.1979.29.4.361.
  23. Salgado, R. and Prezzi, M. (2007), "Computation of cavity expansion pressure and penetration resistance in sands", Int. J. Geomech., 7(4), 251-265. https://doi.org/10.1061/(ASCE)1532-3641(2007)7: 4(251).
  24. Shuttle, D. (2007), "Cylindrical cavity expansion and contraction in Tresca soil", Geotechnique, 57(3), 305-308. https://doi.org/10.1680/geot.2007.57.3.305.
  25. Sivasithamparam, N. and Castro, J. (2018), "Undrained expansion of a cylindrical cavity in clays with fabric anisotropy: theoretical solution", Acta Geotech., 13(3), 729-746, https://doi.org/10.1007/s11440-017-0587-4.
  26. Sivasithamparam, N. and Castro, J. (2020), "Undrained cylindrical cavity expansion in clays with fabric anisotropy and structure: Theoretical solution", Comput. Geotech., 120(1), 103386. https://doi.org/10.1016/j.compgeo.2019.103386.
  27. Thiyyakkandi, S. (2022), "Analysis of cavity expansion and contraction in unsaturated residual soils", Geomech. Eng., 28(4), 405-419. https://doi.org/10.12989/gae.2022.28.4.405.
  28. Vardoulakis, I. and Papanastasiou, P. (1988), "Bifurcation analysis of deep boreholes: I. Surface instabilities." Int. J. Numer. Anal. Meth. Geomech., 12(4), 379-399. https://doi.org/10.1002/nag.1610120404.
  29. Vesic, A.S. (1972), "Expansion of cavities in infinite soil mass", J. Soil Mech. Found. Div., 98(3), 265-290. https://doi.org/10.1061/JSFEAQ.0001740
  30. Yu, H.S. and Houlsby, G.T. (1991), "Finite cavity expansion in dilatant soils: Loading analysis", Geotechnique, 41(2), 173-183. https://doi.org/10.1680/geot.1991.41.2.173.
  31. Zervos A., Papanastasiou, P. and Vardoulakis, I. (2001), "Vardoulakis, Modelling of localization and scale effect in thick-walled cylinders with gradient elastoplasticity", Int. J. Solids Struct., 38(30), 5081-5095. https://doi.org/10.1016/S0020-7683(00)00337-1.
  32. Zervos, A. and Vardoulakis, I. and Papanastasiou, P. (2007), "Influence of nonassociativity on localization and failure in geomechanics based on gradient elastoplasticity", Int. J. Geomech., 7(1), 63-74. https://doi.org/10.1061/(ASCE)1532-3641(2007)7:1(63).
  33. Zhao, C., Wang, Y.B., Zhao, C., Wu, Y. and Fei, Y. (2020), "Analysis of drained cavity unloading-contraction considering different degrees of intermediate principal stress with unified strength theory", Int. J. Geomech., 20(7), 04020086. https://ascelibrary.org/doi/full/10.1061/%28ASCE%29GM.1943-5622.0001703.
  34. Zhao, C.F., Fei, Y., Zhao, C. and Jia, S.H. (2018), "Analysis of expanded radius and internal expanding pressure for undrained cylindrical cavity expansion", Int. J. Geomech., 18(2), 04017139. https://ascelibrary.org/doi/full/10.1061/(ASCE)GM.1943-5622.0001058.
  35. Zhou, H., Kong, G., Liu, H. and Laloui, L. (2018), "Similarity solution for cavity expansion in thermoplastic soil", Int. J. Numer. Anal. Meth. Geomech., 42(2), 274-294. https://doi.org/10.1002/nag.2724.
  36. Zhou, H., Kong, G., Liu, H., Wu, Y. and Li, G. (2016), "A novel cavity expansion-based analytical tool and its potential application for energy pile foundation", Proceedings of th 1st Int. Conf. Ene. Geotech., https://doi.org/10.1201/B21938-57.
  37. Zou, J.F., Chen, K.F. and Pan, Q.J. (2017), "Influences of seepage force and out-of-plane stress on cavity contracting and tunnel opening", Geomech. Eng., 13(6), 907-928. https://doi.org/10.12989/gae.2017.13.6.907.
  38. Zou, J.F., Tong, W. and Zhao, J. (2012), "Energy dissipation of cavity expansion based on generalized non-linear failure criterion under high stresses", J. Cent. South Univ., 19(5), 1419-1424. CNKI:SUN:ZNGY.0.2012-05-038. https://doi.org/10.1007/s11771-012-1158-3.