DOI QR코드

DOI QR Code

Learning motivation of groups classified based on the longitudinal change trajectory of mathematics academic achievement: For South Korean students

  • Yongseok Kim (Department of mathematics Education, Sungkyunkwan University)
  • Received : 2024.01.23
  • Accepted : 2024.03.14
  • Published : 2024.03.31

Abstract

This study utilized South Korean elementary and middle school student data to examine the longitudinal change trajectories of learning motivation types according to the longitudinal change trajectories of mathematics academic achievement. Growth mixture modeling, latent growth model, and multiple indicator latent growth model were used to examine various change trajectories for longitudinal data. As a result of the analysis, it was classified into 4 subgroups with similar longitudinal change trajectories of mathematics academic achievement, and the characteristics of the mathematics subject, which emphasize systematicity, appeared. Furthermore, higher mathematics academic achievement was associated with higher self-determination and higher academic motivation. And as the grade level increases, amotivation increases and self-determination decreases. This study suggests that teaching and learning support using this is necessary because the level of learning motivation according to self-determination is different depending on the level of mathematics academic achievement reflecting the characteristics of the student.

Keywords

References

  1. Bishop, J., Geiser, C., & Cole, D. A. (2015). Modeling latent growth with multiple indicators: A comparison of three approaches. Psychological Methods, 20(1), 43-62. https://doi.org/10.1037/met0000018
  2. Bollen, K. A., & Curran, P. J. (2006). Latent curve models: A structural equation perspective. John Wiley & Sons.
  3. Chan, D. K. C., Yang, S. X., Hamamura, T., Sultan, S., Xing, S., Chatzisarantis, N. L., & Hagger, M. S. (2015). In-lecture learning motivation predicts students' motivation, intention, and behaviour for after-lecture learning: Examining the trans-contextual model across universities from UK, China, and Pakistan. Motivation and Emotion, 39(6), 908-925. https://doi.org/10.1007/s11031-015-9506-x
  4. Curran, P. J., West, S. G., & Finch, J. F. (1996). The robustness of test statistics to nonnormality and specification error in confirmatory factory analysis. Psychological Methods, 1(1), 16-29. https://doi.org/10.1037/1082-989X.1.1.16
  5. Deci, E. L., & Ryan, R. M. (1985). The general causality orientations scale: Self-determination in personality. Journal of Research in Personality,19(2), 109-134. https://doi.org/10.1016/0092-6566(85)90023-6
  6. Deci, E. L. & Ryan, R. M. (2000). The 'What' and 'Why' of goal pursuits: Human needs and the self-determination of behavior. Psychological Inquiry, 11(4), 227-229. https://doi.org/10.1207/S15327965PLI1104_01
  7. Deci, E. L., & Ryan, R. M. (2008). Self-determination theory: A macrotheory of human motivation, development, and health. Canadian Psychology / Psychologie Canadienne, 49(3), 182-185. https://doi.org/10.1037/a0012801
  8. Diseth, A ., Mathisen, F. K. S., & Samdal, O. (2020). A comparison of intrinsic and extrinsic motivation among lower and upper secondary school students. Educational Psychology, 40(8), 961-980. https://doi.org/10.1080/01443410.2020.1778640
  9. Duke, N. K., Halvorsen, A. L., Strachan, S. L., Kim, J., & Konstantopoulos, S. (2021). Putting PjBL to the test: The impact of project-based learning on second graders' social studies and literacy learning and motivation in low-SES school settings. American Educational Research Journal, 58(1), 160-200. https://doi.org/10.3102/0002831220929638
  10. Duncan, T. E., & Duncan, S. C. (2004). An introduction to latent growth curve modeling. Behavior Therapy, 35(2), 333-363. https://doi.org/10.1016/S0005-7894(04)80042-X
  11. Duncan, T. E., Duncan, S. C., & Strycker, L. A. (2013). An introduction to latent variable growth curve modeling: Concepts, issues, and applications. Routledge.
  12. Filgona, J., Sakiyo, J., Gwany, D. M., & Okoronka, A. U. (2020). Motivation in learning. Asian Journal of Education and Social Studies, 10(4), 16-37. https://doi.org/10.9734/ajess/2020/v10i430273
  13. Geary, D. C. (2011). Cognitive predictors of achievement growth in mathematics: A 5-year longitudinal study. Developmental Psychology, 47(6), 1539-1552. https://doi.org/10.1037/a0025510
  14. Guay, F. (2022). Applying self-determination theory to education: Regulations types, psychological needs, and autonomy supporting behaviors. Canadian Journal of School Psychology, 37(1), 75-92. https://doi.org/10.1177/08295735211055355
  15. Kang, H. S., Kim, H. D., Lee, H. Y., & Kim, B. J. (2016). Development of items in the 5th year of the Gyeonggi education longitudinal study. Gyeonggi Education Research Institute
  16. Kim, A. Y., & Oh, S. A. (2001). Classification of Motivation on the Continuum of Self-Determination. Journal of Education Psychology, 15(4), 97-119.
  17. Kim, S. H., Kang, D. H., Moon, S. M., Yoon, W. S., & Park, S. H. (2016). Research on the achievement score for the academic achievement test for the 7th year Seoul National University of Education. Seoul Institute for Education Policy.
  18. Kim, Y. S. (2020). A longitudinal study on the effect of learner's internal and external factors on mathematics academic achievement: For middle and high school students. Doctoral thesis, Sungkyunkwan University.
  19. Kline, R. B. (2016). Principles and practice of structural equation modeling (4th ed.). Guilford Press.
  20. Lee, M. B. (2003). The effect of self-determination motivation and self-regulated learning on academic achievement. Master's thesis, Yonsei University.
  21. Leech, N. L., Barrett, K. C., & Morgan, G. A. (2014). IBM SPSS for intermediate statistics: Use and interpretation. Routledge.
  22. Little, T. D. (2013). Longitudinal structural equation modeling. Guilford Press.
  23. Mok, M. M., McInerney, D. M., Zhu, J., & Or, A. (2015). Growth trajectories of mathematics achievement: Longitudinal tracking of student academic progress. British Journal of Educational Psychology, 85(2), 154-171. https://doi.org/10.1111/bjep.12060
  24. Newsom, J. T. (2015). Longitudinal structural equation modeling: A comprehensive introduction. Routledge.
  25. Perez Mejias, P., McAllister, D. E., Diaz, K. G., & Ravest, J. (2021). A longitudinal study of the gender gap in mathematics achievement: evidence from Chile. Educational Studies in Mathematics, 107(3), 583-605. https://doi.org/10.1007/s10649-021-10052-1
  26. Pintrich, P. R., & Schunk, D. H. (2002). Motivation in education: Theory, research, and applications. Prentice Hall.
  27. Prislin, R. (2022). Minority influence: An agenda for study of social change. Frontiers in Psychology, 13, 911654. https://doi.org/10.3389/fpsyg.2022.911654
  28. Ryan, R, M. & Deci, E. L. (2000). Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. American Psychologist, 55(1), 68-78. https://doi.org/10.1037/0003-066X.55.1.68
  29. Ryan, R. M., & Deci, E. L. (2017). Self-determination theory: Basic psychological needs in motivation, development, and wellness. Guilford Publications.
  30. Ryan, R. M., & Deci, E. L. (2020). Intrinsic and extrinsic motivation from a self-determination theory perspective: Definitions, theory, practices, and future directions. Contemporary Educational Psychology, 61, 101860. https://doi.org/10.1016/j.cedpsych.2020.101860
  31. Shin, J., Lee, H., & Kim, Y. (2009). Student and school factors affecting mathematics achievement: International comparisons between Korea, Japan and the USA. School Psychology International, 30(5), 520-537. https://doi.org/10.1177/0143034309107070
  32. Sung, K. S., Kim, J. Y., Park, S. Y., & Min, B. C. (2012). Gyeonggi education longitudinal research rese math academic achievement, learning motivation, self-determination theory, growth mixture modelling, latent growth model arch design and item development research. Korea Education Research Network.
  33. Tremblay-Wragg, E., Raby, C., Menard, L., & Plante, I. (2021). The use of diversified teaching strategies by four university teachers: What contribution to their students' learning motivation? Teaching in Higher Education, 26(1), 97-114. https://doi.org/10.1080/13562517.2019.1636221
  34. Wang, M.-C., Deng, Q., Bi, X., Ye, H., & Yang, W. (2017). Performance of the entropy as an index of classification accuracy in latent profile analysis: A Monte Carlo simulation study. Acta Psychologica Sinica, 49(11), 1473-1482. https://doi.org/10.3724/SP.J.1041.2017.01473
  35. Wang, J., & Wang, X. (2019). Structural equation modeling: Applications using Mplus. John Wiley & Sons.
  36. Zaccone, M. C., & Pedrini, M. (2019). The effects of intrinsic and extrinsic motivation on students learning effectiveness. Exploring the moderating role of gender. International Journal of Educational Management, 33(6), 1381-1394. https://doi.org/10.1108/IJEM-03-2019-0099
  37. Zheng, Y., Ye, X., & Hsiao, J. H. (2022). Does adding video and subtitles to an audio lesson facilitate its comprehension? Learning and Instruction, 77, 101542. https://doi.org/10.1016/j.learninstruc.2021.101542