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Abstract 

 

Mathematical argument has been given much attention in the research literature as a 

mediating construct between reasoning and proof. However, there have been relatively less 

efforts made in the research that examined the nature of empirical arguments represented 

in textbooks and how students perceive them as proofs. Cases of point include Intermediate 

Value Theorem [IVT] and Maximum-Minimum theorem [MMT] in grade 11 in Korea. In 

this study, using Toulmin’s framework (1958), the author analyzed the substance of the 

empirical arguments provided for both MMT and IVT to draw comparisons between the 

nature of datum, claims, and warrants among empirical arguments offered in textbooks. 

Also, an online survey was administered to learn about how students view as proofs the 

empirical arguments provided for MMT and IVT. Results indicate that nearly half of 

students tended to accept the empirical arguments as proofs. Implications are discussed to 

suggest alternative approaches for teaching MMT and IVT. 
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I. INTRODUCTION  

 
Mathematical argument has been given much attention in the research literature as 

a mediating construct between reasoning and proof. Though the conceptualizations of and 

distinction between proof, reasoning, and argument are often made in various ways (e.g., 

Bieda, Conner, Kosko, & Staples, 2022; Knuth, Zaslavsky, & Kim, 2022), for this study, 

reasoning is defined as one’s cognitive process of making a claim based on data (e.g., a 

preceding assumption, a set of examples) or through inferences. A sequence of reasoning 

leads to the development of a mathematical argument which “intends to show or explain a 

mathematical result is true” (Sriraman & Umland, 2014, p. 46). Despite the fact that Weber 

(2014) defined proof as a cluster, in this study, proof is conceptualized as “a deductive 

argument that does not admit possible rebuttals” (p. 357, italics added). In sum, reasoning 

is part of a mathematical argument and a mathematical argument may be conferred on the 

status of a proof provided that the mathematical argument is with no potential to admit any 

rebuttals. As well documented in Lakatos (1976), the essence of doing mathematics as a 

producer of mathematical knowledge is making efforts to derive a tentatively-true claim to 

one’s eye and he or she defends the mathematical claim through seeking warrants, backings, 

or the use of a qualifier (Toulmin, 1958). In doing mathematics and understanding 

acceptable forms or representations of mathematical arguments, mathematical arguments 

represented in textbooks are of crucial importance in offering opportunities for students to 

understand what a mathematical proof is like (Cai, Ni, & Lester, 2011) and textbooks may 

be the venue through which students are first introduced to formal ideas of proof (Fan, 2013; 

Grouws, Smith, & Sztajn, 2004). It is important to learn about what types of proof students 

are introduced to and what the nature of substance of a proof is (Cai & Cirillo, 2014; Harel 

& Sowder, 1998; Miyakawa, 2017; Stein, Remillard, & Smith, 2007; Stylianides, 2014; 

Valverde et al., 2002). This study is another research effort in this area of research that 

examines mathematical arguments in Korean Mathematics II textbooks (Ministry of 

Education [MoE], 2015) which have been given little attention in the research. 

In the research literature on proof and mathematical argument, there have been 

research efforts which investigated the nature of mathematical arguments presented in 

textbooks in relation to proof (Bergwall & Hemmi, 2017; Bieda, Ji, Drwencke, & Picard, 

2014; Davis, Smith, Roy, & Bilgic, 2014; Fujita & Jones, 2014; McCory & Stylianides, 

2014; Miyakawa, 2017; Otten, Males, & Gilbertson, 2014; Stylianides, 2009; Thompson, 

Senk, & Johnson, 2012). However, there have been relatively less efforts made in the 

research that examined the nature of empirical arguments presented in Korean textbooks 

and how likely students perceive them as proofs. In Korea, there are empirical arguments 

presented in the secondary textbooks: cases of point are Intermediate Value Theorem [IVT] 

and Maximum-Minimum theorem [MMT] in grade 11 (MoE, 2015). The corresponding 

proofs for the aforementioned theorems are beyond student’s cognitive reach in compliance 

with the national curriculum (MoE, 2015). Though grade 11 is the time after students learn 

formal ideas of mathematical proof per the national curriculum in Korea (MoE, 2015), the 

content prescribed at the grade does not allow for proofs of both MMT and IVT, leaving 

both of the theorems not proved formally but empirically justified. This caught the author’s 
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attention to this matter and made him question how likely students were to be able to 

discern the limitations of the empirical arguments as proofs when presented with the 

arguments. As the substance (including datum, claims, warrants, and backings) of the 

empirical arguments for MMT and IVT may vary from one to another, this study was 

intended first to draw comparisons of the nature of the substance between Korean grade 11 

textbooks and, then, to discuss implications suggesting alternative approaches for the 

teaching of these theorems. This study was particularly designed to address the following 

research questions: 

a) What is the nature of datum, claims, warrants and backings for MMT and 

IVT presented in the Korean textbooks? 

b) How likely are students to find empirical arguments provided for MMT 

and IVT acceptable as proofs? 

To address the first research question, the author analyzed the empirical 

arguments provided for MMT and IVT using Toulmin’s framework (1958) and the 

substance of the empirical arguments provided for MMT and IVT to draw 

comparisons between the nature of datum, claims, warrants and backing among the 

empirical arguments offered in the Korean textbooks. In addition to that, for the 

second research question, an online survey was administered to learn about how 

likely students were to be able to discern the limitations of the empirical arguments 

as proofs when presented with the arguments. Implications for teaching these 

theorems along with the empirical arguments will also be discussed.  

 

 

II. LITERATURE REVIEW 
 

Importance of Proof and Reasoning in School Mathematics 

Recently, researchers and recommendations call for proof and reasoning to play a 

central role in students’ learning of mathematics and in school mathematics. NCTM (2000) 

maintains that proof and reasoning should be part of everyday instruction of mathematics 

at all grade levels without reserving it for special occasions or specific grades (Knuth, 2002). 

In a similar vein, Schoenfeld (1994) argued that proof and reasoning is a fundamental 

aspect of student’s learning mathematics and he further stated that proof is “the soul” of 

mathematics (Schoenfeld, 2009). For clarity in the subsequent discussions, here and 

thereafter, I refer to an empirical argument as a mathematical argument of which data is a 

set of examples that are not comprehensive of the domain of the argument and of which 

truth is solely based on the result of testing the claim of the argument against a few chosen 

examples.  

Researchers documented that proof and reasoning is challenging for both teachers 

and students despite the benefits of engaging in proof and reasoning. Fawcett (1938) 

suggested that geometric proofs serve to develop students’ understandings about what it 

means to be a proof in mathematics rather than about geometric knowledge. 

Mathematicians read others’ proofs first to understand and critique proofs and, then, to gain 
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insight into other proofs (Epstein & Levy, 1995). However, students do not see the 

premium and values that mathematicians place on proof (Alcock & Inglis, 2008; Chazan, 

1993) and teachers tend to consider proof as a mere subject of study at a certain time for a 

select few (Basturk, 2010; Kim, 2022a; Knuth, 2002). Another challenge in the learning of 

mathematics is concerned with difficulties in recognizing the limitations of empirical 

arguments as proofs (Coe & Ruthven, 1994; Harel & Sowder, 1998; Kim, 2022a; Knuth, 

Choppin, & Bieda, 2009). A similar tendency seems to persist among secondary students 

(Knuth et al., 2009). Difficulties of this nature seem to originate from the smudged picture 

of proof, evidence, and derivation (Aberdein, 2019) and the lack of connection between 

proof knowledge and proof construction (Schoenfeld, 1988). Also, the choice of form 

which one decides for an argument to take on hinges upon one’s prior experiences with 

forms of proof (Harel & Sowder, 1998; Kim, 2022a; Knuth, 2002; Selden & Selden, 1995) 

and the consistency and coherence (or the lack thereof) of sociomathematical norms 

concerned with proof across grade levels (Jones, 2010; Knuth, 2002; Yackel & Cobb, 1996). 

In this regard, there is a need to engage students in proving-related opportunities across 

various topics of study and to appreciate proofs of diverse forms. Some researchers argue 

that mathematical argument is of the potential to engage students in proving-related 

opportunities as a routine part of everyday instruction (Kim, 2021, 2022b; Stylianou & 

Blanton, 2011).  

 

Mathematical Argument Leading to Proof 

The research of mathematical argumentation has been given attention in the 

research of mathematics education. In Proofs and Refutations, Lakatos (1976) 

demonstrated well how a mathematical discourse takes place in a hypothetical classroom 

and how a mathematical argument may be developed through different approaches such as 

qualifying definitions and claims and revising local arguments of a global argument. The 

volume shows the dynamic nature of doing mathematics and developing mathematical 

knowledge through mathematical argumentation (i.e. developing mathematical arguments), 

leading to a proof for a mathematical proposition. Mathematical argumentation seems to 

possess benefits such as enhancing one’s conceptual understanding (Krummheuer, 1995) 

and one’s taking an active role in producing mathematical knowledge (Koestler, Felton, 

Bieda, & Otten, 2013). Recognizing the importance of argumentation for student’s learning 

of mathematics, researchers continue to make efforts to modify the Toulmin’s model of 

argumentation (e.g., Conner, 2008; Krummheuer, 1995; Knipping & Reid, 2019). Despite 

the differences in the models they developed, what their models bear in common is that 

mathematical argumentation is a pathway to proof and, more importantly, that they adopt 

the constructs of Toulmin’s (1958) model: Data, claim, warrant, and backing. 

 

The Skeleton of Mathematical Arguments  

Toulmin (1958) introduced, in Uses of Arguments, the skeleton of arguments and 

it has been translated into the field of mathematics education (e.g., Bieda et al., 2022; 

Conner et al., 2014; Knipping & Reid, 2019; Krummheuer, 1995). Toulmin (1958) 

analyzed arguments in various fields, he abstracted components with consideration of what 
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role each component serves in an argument. Toulmin’s (1958) skeleton of arguments 

consists of components: Datum [D], warrants [W], backings [B], claims [C], rebuttals [R], 

and qualifiers [Q]. Knipping & Reid (2019) pointed out that, in secondary textbooks, 

students are rarely encountered with R and Q. Accordingly, Knipping & Reid (2019) 

provided a diagram (see Figure 1 below) with D, C, W, and B. Figure 1 succinctly provides 

an overview of the structure of an argument.   

 

 
Figure 1. Toulmin’s structure of argument (Knipping & Reid, 2019, p. 4) 

 

 

III. METHODOLOGY 
 

Data Collection 

The corpus of data consists of excerpts taken from nine textbooks available in 

Korea. In Korea, the government has delegated its authority to a government-funded 

agency in approving curriculum materials for use in Korean schools and ensured the 

compliance of such curriculum materials with the national curricula. With the list of the 

approved titles for each subject, school officials and teachers make decisions about what a 

textbook for each subject is chosen for use once a new list of titles is released. The list of 

approved textbooks for Mathematics II in grade 11 is provided in Table 1. 

 
Table 1. The list of approved mathematics II textbooks (Korea Textbook Research Foundation, n.d.) 

Publisher Year of Publication Authors 

Kyohak 2018 Kwon et al. 

Keumsung 2018 Bae et al. 

Donga 2018 Park et al. 

MiraeN 2018 Hwang et al. 

Visang 2018 Kim et al. 

Sinsago 2018 Koh et al. 

Jihaksa 2018 Hong et al. 

Chunjae 2018 Lew et al. 

Chunjae 2018 Lee et al. 

 
According to the national mathematics curriculum (MoE, 2015, 2022), there are 

several theorems provided with no proofs: Cases of point include MMT and IVT. 

According to the national curriculum (MoE, 2015), it is generally stated that: students are 

able to “understand properties for continuous functions and apply them” (p. 74). It is also 

noted with caution that: “Definitions and properties of limit of function should be 
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understood intuitively and technology may be used” (p. 75, italics added). With the 

foregoing statements concerned with the teaching of MMT and IVT, MoE places an 

emphasis on fostering the intuitive understanding of MMT and IVT in ways such as using 

graphs which are generic examples or näive empiricism (Balacheff, 1988). 

An online survey was administered to learn about students’ views about the need 

of proof in mathematics and about the empirical arguments provided for both MMT and 

IVT. The survey was part of another study (Kim, 2022a) that was designed to learn about 

students’ views about example use in relation to mathematical proof (see Table 2 for 

details). The survey questions used for this study were developed to address the second 

research question. Though sixty-two students initially opened the online survey, there were 

fifty participants who answered the survey in full (i.e. completed the survey until the very 

end). The participant students were recruited as a convenient sample from the high school 

where the author worked at the time when the study was underway and the students were 

not compensated for their participation.  

 
Table 2. The online-administered survey questions  

1. (After explaining the maximum-minimum theorem and the intermediate theorem with the 
examples and the narrative provided in the text) Do you think a proof for the maximum-
minimum theorem may be replaced with the examples the teacher provided? 

2*. Please explain why you think so. 
3*. Generally speaking, do you think a few examples can replace proofs in mathematics?  
4. Do you think a proof for the intermediate value theorem may be replaced with the examples 

the teacher provided? 
5*. Please explain why you think so. 
6*. Do you think a proof for the intermediate value theorem may be replaced with the examples 

the teacher provided? 
(Asterisks denote that the responses to the questions were recorded in writing. The responses 
for the rest of the question numbers without asterisk were recorded on a four- or five-point 
Likert scale.) 

 

Data Analysis 

The datum, claims, warrants, and backings of the empirical arguments provided 

for MMT and IVT were analyzed. With the view (Knipping & Reid, 2019) that R and Q 

are rarely presented at secondary level, the author decided not to include these components 

for analysis from the initial round of coding since there was no instance of R and Q across 

all the textbooks.  

The analysis took place in sequence. In the first path of the analysis, the author 

located the relevant pages where MMT and IVT are covered in the narrative of each 

textbook using the teacher guide and the table of contents. After locating the relevant pages, 

the pages were examined to confirm whether they indeed covered MMT and IVT. Then, 

the claims of MMT and IVT were identified and it was learned that all the claims made in 

all the textbooks were the same. Following this stage, the author analyzed the narrative 

appearing in advance of or following the claims to identify the datum, warrants, and 

backings for the claims.  

The survey responses were recorded in writing, on a four- or five-point Likert scale. 

The responses recorded on a four- or five-point Likert scale were analyzed and reported 
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statistically. Tendencies observed from the statistical results were triangulated with the 

responses recorded in writing. Some representative written responses were identified and 

reported to learn about students’ views about how likely they are to accept the given 

empirical arguments of both MMT and IVT as proofs. 
 

 

Ⅳ. RESULTS 
 

Examples as Datum Leading to Claims 

All the claims were validated with a few chosen examples that confirm the claims 

for both MMT and IVT. It is hardly unexpected to see examples used to validate the claims 

for MMT and IVT given the compliance of textbooks with the national curriculum which 

recommends teachers “not to prove the theorems but to intuitively justify them” (MoE, 

2022, p. 75). This choice of empirical arguments was not an option for textbook writers 

either. Instances of these empirical arguments are given below (see Figure 2). 
 

An example datum for MMT (Lee et al., 2018, p. 37) 

 
Translation: Let’s figure out whether a continuous function has the maximum and minimum in 
a given interval. 𝑓(𝑥) = 𝑥2 is continuous at all real numbers. On the closed interval [−2, 1], 
𝑓(𝑥) has the maximum 4 at 𝑥 = −2 and 𝑓(𝑥) has the minimum 0 at 𝑥 = 0. In contrast, 𝑓(𝑥) 
has the minimum 0 at 𝑥 = 0 but the maximum on the open interval (−2, 1). 

An example datum for IVT (Hong et al., 2018, p. 39) 

 
Translation: Since 𝑓(𝑥) = 𝑥2 is continuous on [1, 2], the graph connects two points, 𝐴(1, 1) 
and 𝐵(2, 4). Thus, for any 𝑘 (1 < 𝑘 < 4), 𝑦 = 𝑘 and 𝑓(𝑥) = 𝑥2 should intersect each other. 
That is, for any 𝑘 between 𝑓(1) and 𝑓(2), there exists 𝑐 such that 𝑓(𝑐) = 𝑘. 

 Figure 2. Examples of datum used for MMT and IVT 
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The data used to make the claims for MMT and IVT were not the same for all 

textbooks. All the textbooks commonly used continuous functions within bounded and 

closed intervals to justify the claims for MMT and IVT. Examples used as data for the 

claims by each textbook are summarized below in Table 3.  

 
Table 3. Examples used as datum for MMT and IVT 

Textbook Examples for MMT Examples for IVT 

Kwon et al. (2018) The function 𝑦 = 𝑥2 − 2𝑥 is 

considered on [−1, 2] and (−1, 2), 

respectively (p. 39). 

The function 𝑦 = 𝑥2 is 

considered on [0, 2] (p. 40). 

Bae et al. (2018) The function 𝑦 = 𝑥2 + 1 is 

considered on [−1,2], (−1, 2), and 

(0, 2), respectively (p. 42). 

The function 𝑦 = 𝑥2 − 2𝑥 − 2 is 

considered on [1, 2] (p. 43). A 

continuous function 𝑓(𝑥) as a 

generic example is considered on 

[𝑎, 𝑏] (p. 44). 

Park et al. (2018) The function 𝑦 = 𝑥2 + 1 is 

considered on [−1,2] and (−1, 2), 

respectively (p. 38). 

A continuous function 𝑓(𝑥) as a 

generic example is considered on 

[𝑎, 𝑏] (p. 40). 

Hwang et al. (2018) The function 𝑦 = −𝑥2 + 4 is 

considered on [−1, 2], [−1, 2), and 

(0, 2), respectively (p. 37). 

The function 𝑦 = 𝑥2 is 

considered on [1, 2] (p. 38). 

Kim et al. (2018) The function 𝑦 = 𝑥2 is considered 

on [−2,1] (p. 37). 

A continuous function 𝑓(𝑥) as a 

generic example is considered on 

[𝑎, 𝑏] (p. 38). 

Koh et al. (2018) The function 𝑦 = 𝑥2 − 1 is 

considered on [−1, 2] and (−1, 2), 

respectively (p. 37). 

A continuous function 𝑓(𝑥) as a 

generic example is considered on 

[𝑎, 𝑏] (p. 38). 

Hong et al. (2018) The function 𝑦 = 𝑥2 is considered 

in [1,2]. Another continuous 

function 𝑓(𝑥) as a generic 

example1 is considered on [𝑎, 𝑏] (p. 

38). 

The function 𝑦 = 𝑥2 is 

considered in [1, 2]. Another 

continuous function 𝑓(𝑥) as a 

generic example is considered on 

[𝑎, 𝑏] (p. 38). 

Lew et al. (2018) The function 𝑦 = 𝑥2 is considered 

on [−1, 2], (−1, 2), and (0, 2], 
respectively (p. 37). 

The function 𝑦 = (𝑥 − 1)2 is 

considered in [1, 3]. Also, another 

example of a discontinuous 

function is considered on 

[1, 3] (p. 38). 

Lee et al. (2018) The function 𝑦 = 𝑥2 is considered 

on [−2,1], (−2, 1), and (0, 2), 

respectively (p. 37). 

The function 𝑦 = 𝑥2 is 

considered on [1, 2] (p. 38). 

Note: all the instances were adapted from the corresponding textbook appearing in the same row. 

 
1 Balacheff (1988) drew a distinction between example use with respect to one’s recognition of the 

generality and specificity of examples used to justify a mathematical claim. By generic example, it 

refers to mathematical examples which are of generality in the sense that the operation or 

construction applied to them is readily applicable to other mathematical objects of the same class 

but still not general.  
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However, there was a difference in the use of examples from one textbook to 

another. The examples used are partially against the premises of the claims and thus may 

not make the same claims hold true. Cases of this point are provided below (see Figure 3). 

Given that the premise for MMT and IVT is “a continuous function on a closed and 

bounded interval [𝑎, 𝑏]”, the intervals such as (−2, 1), [−1, 2) are partially against the 

premise by considering intervals that are not closed but bounded. Also, other examples 

used were concerned with the continuity of a function: An example of this nature are 

discontinuous functions on a closed and bounded interval. However, there was no instance 

of examples which are against two or more conditions of the premise: continuity, 

boundedness and closedness of an interval.  
 

An example that is partly against the premise of MMT (Koh et al., 2018, p. 37) 

 
Translation: By contrast, 𝑓(𝑥) does not have the maximum while it has the minimum 𝑓(0) =

−1 at 𝑥 = 0 on (−1, 2). 

An example that is partly against the premise of IVT (Lew et al., 2018, p. 38) 

 
Translation: The function 𝑔(𝑥) is not continuous on [1, 3] while 𝑔(1) ≠ 𝑔(3). There does not 

exist 𝑐 in (1, 3) such that 𝑔(𝑐) = 2 (𝑔(1) < 2 < 𝑔(3)).  

Figure 3. Instances of examples that are partly against the premises of IVT and MMT 

 
The example shown at the top of Figure 3 is an instance which falls short of being 

the closed interval, indicating that the part of the premise (i.e. a closed interval) of MMT 

is not met. It is also true for the example shown at the bottom of Figure 3: the example does 
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not satisfy the part of the premise of IVT (i.e. a continuous function on a given closed 

interval). This use of examples was not common across the textbooks. The vast majority 

(seven out of nine) presented a number of examples presumably to develop a sophisticated 

understanding of the premise in that the negation of any of the conditions contained in the 

premise would not guarantee the truth of the claim.  

On the contrary, there was only one instance that is partly against the premise of 

IVT and is used as the data for the theorem. Lew et al. (2018) was the only aberration that 

a discontinuous function on a closed and bounded interval was considered for IVT. Except 

for the aberration, there were only two kinds of examples used as datum for the claim of 

IVT: one is particular examples and the other is generic examples. By particular examples, 

I refer to examples such as 𝑦 = 𝑥2 on [1, 2] (Lee et al., 2018, p. 38). On the other hand, I 

refer to as a generic example a continuous function 𝑓(𝑥) on [𝑎, 𝑏] (Bae et al., p. 44) which 

is of generality in the sense that, on the surface, the example is a general case, however, the 

graph juxtaposed with the function is a particular case. The generic example of this nature 

only appeals to the intuition of the reader through the presentation of the graph for the 

continuous function 𝑓(𝑥) on [𝑎, 𝑏] (see Figure 4).  

 

 
Translation: If 𝑓(𝑥)  is continuous on the closed interval [𝑎, 𝑏] , then the graph of 𝑓(𝑥)  is 

connected without being interfered. When 𝑓(𝑎) ≠ 𝑓(𝑏), as seen on the figure on the right-hand 

side, for any 𝑘 between 𝑓(𝑎) and 𝑓(𝑏), the graphs of 𝑦 = 𝑘 and 𝑦 = 𝑓(𝑥) intersect at least once. 

Figure 4. An instance of a generic example used as datum for IVT (Park et al., 2018, p. 40) 

 

Warrant without Backing 

 Warrants used for the claims of MMT and IVT were the same for all the 

textbooks. The warrant was an authoritative statement that “generally, the MMT (or IVT) 

holds true for a continuous function on a closed interval” (Kwon et al., 2018, pp. 39-40). 

This statement simply put an end to discussions about the potential existence of rebuttals 

to the empirical arguments for both MMT and IVT in the textbooks, thus leaving redundant 

questions about the truth of the claims and the acceptability of the empirical arguments 

surfacing after the statement is read. Furthermore, there were no backings for the warrants 

for both MMT and IVT.  
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Empirical Arguments as Proofs for The Maximum-Minimum Theorem  

Students were asked to express their agreement with the statement that a number 

of confirming cases suffice to prove MMT. Half (50%, accumulatively) of the students 

agreed with the sufficiency of the empirical argument as a proof to varying degrees while 

fourteen students (28%) were neutral and the other eleven students (22%, accumulatively) 

disagreed with the validity of the empirical statement as a proof to some degrees. Table 4 

provides an overview of the students’ responses. 

 
Table 4. Students’ views about empirical arguments as proofs for MMT 

Degree of Agreement Count (percentage) 

Strongly agree 2 (4%) 

Somewhat agree 23 (46%) 

Neither agree nor disagree 14 (28%) 

Somewhat disagree 8 (16%) 

Strongly disagree 3 (6%) 

 
Most of the students tended to somewhat agree with that the empirical arguments 

were sufficient to prove MMT. Among those students, there were students who pointed out 

the limitations of empirical arguments as proofs. However, there were also those who 

seemed to think that the empirical arguments might replace a proof without further 

examination. The following are some of the written responses from those students: 

“Providing examples confirming the theorem is a way of proving the theorem.” 

“A proof is something that is used to understand a theorem, so that confirming 

examples may replace the proof for a theorem.” 

“Deriving from formulae is not always a way of proving a theorem. As long as it 

appeals to lay people, a convincing argumentation is a proof.” 

 

These responses are concerned with issues related to perceptions about proof 

documented in the literature: misunderstanding evidence for proof (e.g., Chazan, 1993; Coe 

& Ruthven, 1994; Knuth et al., 2020) and failure to recognize the potential existence of 

counterexamples to the empirical arguments (Fischbein, 1982).  

 

Empirical Arguments as Proofs for The Intermediate Value Theorem  
Students were asked to express their agreement with the statement that the 

empirical arguments for IVT sufficed to prove the theorem. A slight majority (52%, 

accumulatively) of the students agreed with the statement to varying degrees while eleven 

students (22%) were neutral and the other thirteen students (26%, accumulatively) 

disagreed with the statement to certain degrees. In relation to the result in the case of MMT, 

there was a slight difference of four percent in disagreement and a slight difference of eight 

percent in strong agreement between MMT and IVT. Table 5 provides the detailed results.  
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Table 5. Students’ views about empirical arguments as a proof for IVT 

Degree of Agreement Count (percentage) 

Strongly agree 6 (12%) 

Somewhat agree 20 (40%) 

Neither agree nor disagree 11 (22%) 

Somewhat disagree 10 (20%) 

Strongly disagree 3 (6%) 

 
Some of the written responses shed some light on the reasoning behind the results. 

The following excerpts were drawn from those students who showed somewhat or strong 

agreement with the statement that the empirical arguments provided for IVT were sufficient 

to prove IVT.  

 “It [the empirical argument] may be understood geometrically” 

 “It [the empirical argument] showed that proving it is possible.” 

 “Since the only thing that matters is to be [understood].”  

 

The excerpts of the students’ written responses pointed to a persistent issue with 

students’ views about proof: one’s acceptance of a mathematical argument as a proof 

hinges upon the reader’s understanding of the argument (Kim, 2022a). 

 

 

V. DISCUSSIONS 

 

This study examined the nature of empirical arguments for two theorems in the 

Korean national curriculum. The cases of point are MMT and IVT which are neither 

formally justified nor expected to be justified through proofs during K-12 education in 

compliance with the national curriculum (MoE, 2015, 2022). The datum used for the 

theorems were either specific examples or generic examples and the same warrant was 

provided: it is generally known that the claim (of MMT or IVT) holds true. Also, there 

were no backings presented for the warrants to both MMT and IVT. Given the focus on the 

teaching of MMT and IVT in the national curriculum, teachers are expected to appeal for 

students’ intuitions as to the truth of and understanding of the theorems. However, the 

online-administered survey revealed that a slight majority (50% for the case of MMT and 

52% for IVT) of the students showed the empirical arguments given for the theorems 

sufficed to prove the theorems while 22% and 26% of the students showed disagreements 

with the empirical arguments provided as proofs for MMT and IVT, respectively. This 

brings to the fore issues concerned with the acceptability of a mathematical argument and 

care must be given to the teaching of both MMT and IVT with empirical arguments. The 

former case is related to the role of the readers who act as judges to evaluate the 

acceptability of a mathematical argument as a proof (Wittgenstein, 1974). The latter 
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necessitates alternative approaches in teaching MMT and IVT with empirical arguments as 

represented in textbooks. It also suggests that there would be revisions or support for 

teachers as to enhancing students’ understandings about the limitations of empirical 

arguments as proofs so that students understand MMT and IVT intuitively in grade 11 while 

acknowledging the limited nature of empirical arguments as proofs. In class, teachers may 

find helpful the results of Stylianides & Stylianides (2014): Milestones for leading whole-

class discussions from an empirical argument toward a proof. Although the study was 

conducted with different tasks, with the results of the study in mind, teachers may have 

students question their convictions about the validity of the empirical arguments. In turn, 

students would be able to see the need of deductive proofs for IVT and MMT. In that 

moment, teachers and students could benefit from using a dynamic geometry environment 

to examine MMT and IVT. Engaging in a dynamic geometry setting to search for 

counterexamples to MMT and IVT, students would gradually learn that it is unlikely to 

find any counterexamples to these theorems. This alternative approach may help teachers 

plan their classes and, at the same time, it may also enhance students’ understandings about 

the limitations of empirical arguments. 

Another issue concerned with the provision of empirical arguments for MMT and 

IVT with an external authority relates to what a mathematical proof means to students. For 

MMT and IVT, all the textbooks offered purely empirical arguments that only justified the 

claims with a few chosen examples confirming the claims. Several textbook authors went 

further to use generic examples that involve a general case 𝑓(𝑥) with the specificity of the 

graph. This use of a generic example could further be enhanced through the consideration 

of various shapes of graphs. From viewing this result from Harel & Sowder (1998), for 

students who encounter proof-like empirical arguments without recognizing the limitations 

of empirical arguments, empirical arguments justified with an external authority (as is the 

case for IVT and MMT) may become part of their proof schemes and they may think of 

empirical arguments as proofs at a later time in their studies of mathematics, arguing that 

they have seen these arguments before and that they were proofs.  

Attention and care must be given to the results of the students’ written responses 

to the empirical arguments for MMT and IVT. Despite the slight majority of the students 

seemed to recognize the limitations of the empirical arguments as proofs for both MMT 

and IVT, nearly half of the students tended to accept the empirical arguments as proofs. 

The written responses of these students without a robust understanding of mathematical 

proof also confirmed the results of the extant literature: one is concerned with the fact that 

one’s acceptance of a mathematical argument as a proof hinges upon her or his 

understanding of the argument (Knuth, 2002); another is the tendency that students 

misunderstand evidence for proof (Chazan, 1993). It is teachers who can address these 

issues in close contact with individual students. Teachers need support from researchers 

and textbook writers potentially with the provision of guidance that includes cautious 

points on managing student approaches to proof (Stylianides, 2008). They may place 

empirical arguments in a precarious position where empirical arguments are likely to be 

rejected due to the potential existence of counterexamples to them as rebuttals (Toulmin, 

1958). With this support, teachers could better develop students’ understandings about the 
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limitations of empirical arguments as proofs. This study contributes to the literature by 

offering insights into students’ views about the empirical arguments as proofs that have 

received little attention and by calling teachers’ and teacher educators’ attention to the need 

for alternative approaches in the teaching of IVT and MMT. 

 

 

REFERENCES 

 
Aberdein, A. (2019). Evidence, proofs, and derivations. ZDM Mathematics 

Education, 51(5), 825-834. https://doi.org/10.1007/s11858-019-01049-5 

Alcock, L., & Inglis, M. (2008). Doctoral students’ use of examples in evaluating and 

proving conjectures. Educational Studies in Mathematics, 69(2), 111–129.  

Bae, J., Yeo, T., Cho, B., Kim, M., Chun, H., Cho, S., & Byun, D. (2018). Mathematics II. 

Keumsung Publication. 

Balacheff, N. (1988). Aspects of proof in pupils’ practice of school mathematics. In D. 

Pimm (Ed.), Mathematics, teachers and children (pp. 216–235). Hodder & 

Stoughton. 

Basturk, S. (2010). First‐year secondary school mathematics students’ conceptions of 

mathematical proofs and proving. Educational Studies, 36(3), 283-298. 

https://doi.org/10.1080/03055690903424964 

Bergwall, A., & Hemmi, K. (2017). The state of proof in Finnish and Swedish mathematics 

textbooks—Capturing differences in approaches to upper-secondary integral 

calculus. Mathematical Thinking and Learning, 19(1), 1–18. 

https://doi.org/10.1080/10986065.2017.1258615 

Bieda, K. N., Ji, X., Drwencke, J., & Picard, A. (2014). Reasoning-and-proving 

opportunities in elementary mathematics textbooks. International Journal of 

Educational Research, 64, 71-80. https://doi.org/10.1016/j.ijer.2013.06.005 

Bieda, K., Conner, A., Kosko, K. W., & Staples, M. (Eds.). (2022). Conceptions and 

consequences of mathematical argumentation, justification, and proof. Springer. 

Cai, J., & Cirillo, M. (2014). What do we know about reasoning and proving? Opportunities 

and missing opportunities from curriculum analyses. International Journal of 

Educational Research, 64, 132-140. https://doi.org/10.1016/j.ijer.2013.10.007 

Cai, J., Ni, Y., & Lester, F. K. (2011). Curricular effect on the teaching and learning of 

mathematics: Findings from two longitudinal studies in China and the United 

States. International Journal of Educational Research, 50(2), 63-64. 

https://doi.org/10.1016/j.ijer.2011.06.001 

Chazan, D. (1993). High school geometry students’ justification for their views of 

empirical evidence and mathematical proof. Educational Studies in 

Mathematics, 24(4), 359-387. https://doi.org/10.1007/BF01273371 

Coe, R., & Ruthven, K. (1994). Proof practices and constructs of advanced mathematics 

students. British Educational Research Journal, 20(1), 41-53. 

https://doi.org/10.1080/0141192940200105 



INVESTIGATING THE SUBSTANCE AND ACCEPTABILITY OF 

EMPIRICAL ARGUMENTS 

89 

Conner, A. (2008, July 6-13). Argumentation in a geometry class: Aligned with the 

teacher’s conception of proof [Topic Study Group (Vol. 12)]. 11th International 

Congress on Mathematics Education, Monterrey, Mexico. 

Conner, A., Singletary, L. M., Smith, R. C., Wagner, P. A., & Francisco, R. T. (2014). 

Identifying kinds of reasoning in collective argumentation. Mathematical Thinking 

and Learning, 16(3), 181-200. https://doi.org/10.1080/10986065.2014.921131 

Davis, J. D., Smith, D. O., Roy, A. R., & Bilgic, Y. K. (2014). Reasoning-and-proving in 

algebra: The case of two reform-oriented U.S. textbooks. International Journal of 

Educational Research, 64, 92–106. https://doi.org/10.1016/j.ijer.2013.06.012 

Epstein, D., & Levy, S. (1995). Experimentation and proof in mathematics. Notices of the 

AMS, 42(6), 670–674. 

Fan, L. (2013). Textbook research as scientific research: Towards a common ground on 

issues and methods of research on mathematics textbooks. ZDM Mathematics 

Education, 45(5), 765-777. https://doi.org/10.1007/s11858-013-0530-6 

Fawcett, H. (1938). The nature of proof. Columbia University Teachers College Bureau of 

Publications. 

Fujita, T., & Jones, K. (2014). Reasoning-and-proving in geometry in school mathematics 

textbooks in Japan. International Journal of Educational Research, 64, 81–91. 

https://doi.org/10.1016/j.ijer.2013.09.014 

Grouws, D. A., Smith, M. S., & Sztajn, P. (2004). The preparation and teaching practices 

of U.S. mathematics teachers: Grades 4 and 8. In P. Kloosterman & F. Lester (Eds.), 

The 1990 through 2000 mathematics assessments of the National Assessment of 

Educational Progress: Results and interpretations (pp. 221-269). NCTM. 

Harel, G., & Sowder, L. (1998). Students’ proof schemes: Results from exploratory studies. 

In E. Dubinsky, A. Schoenfeld and J. Kaput (Eds.), Research in collegiate 

mathematics education III (Vol. 7) (pp. 234–282). American Mathematical Society. 

Hong, S., Lee, J., Shin, T., Lee, C., Lee, B., Shin, Y., Jeon, H., Kim, H., Kwon, B., Choi, 

W., & Kang, I. (2018). Mathematics II. Jihaksa Publication. 

Hwang, S., Kang, B., Yoon, K., Lee, K., Kim, S., Lee, M., Kim, W., Park, M., & Park, S. 

(2018). Mathematics II. MiraeN Publication. 

Jones, K. (2010). The role of the teacher in teaching proof and proving in geometry. 

Proceedings of the British Society for Research into Learning Mathematics, 30(2), 

62-67. 

Kim, H. (2021). Problem posing in the instruction proof: Bridging everyday lesson and 

proof. Research in Mathematical Education, 24(3), 255-278. 

https://doi.org/10.7468/jksmed.2021.24.3.255 

Kim, H. (2022a). Secondary teachers’ views about proof and judgements on mathematical 

arguments. Research in Mathematical Education, 25(1), 65-89. 

https://doi.org/10.7468/jksmed.2022.25.1.65 

Kim, H. (2022b). Teacher noticing for supporting student proving: Gradual articulation. 

Journal of Educational Research in Mathematics, 32(1), 47-62. 

http://doi.org/10.29275/jerm.2022.32.1.47 



90 Kim 

Kim, W., Cho, M., Bang, K., Yoon, J., Shin, J., Lim, S., Kim, D., Kang, S., Kim, K., Park, 

H., Shim, J., Oh, H., Lee, D., Lee, S., & Jung, J. (2018). Mathematics II. Visang 

Publication. 

Knipping, C., & Reid, D. A. (2019). Argumentation analysis for early career researchers. 
In G. Kaiser & N. Presmeg (Eds.), Compendium for early career researchers in 

mathematics education, ICME-13 monographs (pp. 3-31). Springer. 

https://doi.org/10.1007/978-3-030-15636-7_1 

Knuth, E. J. (2002). Teachers’ conceptions of proof in the context of secondary school 

mathematics. Journal of Mathematics Teacher Education, 5, 61-88. 

https://doi.org/10.1023/A:1013838713648 

Knuth, E. J., Choppin, J., & Bieda, K. (2009). Middle school students’ production of 

mathematical justifications. In D. Stylianou, M. Blanton & E. Knuth (Eds.), 

Teaching and learning proof across the grades: A K-16 perspective (pp. 153–170). 

Routledge.  

Knuth, E., Kim, H., Zaslavsky, O., Vinsonhaler, R., Gaddis, D., & Fernandez, L. (2020). 

Teachers’ views about the role of examples in proving-related activities. Journal of 

Educational Research in Mathematics, 30(3), 115–134. 

Knuth, E., Zaslavsky, O., & Kim, H. (2022). Argumentation, justification, and proof in 

middle grades: A rose by any other name. In K. Bieda, A. Conner, K. Kosko, & M. 

Staples (Eds.), Conceptions and consequences of mathematical argumentation, 

justification, and proof (pp. 129-136). Springer International Publishing. 

Koestler, C., Felton, M. D., Bieda, K., & Otten, S. (2013). Connecting the NCTM process 

standards and the CCSSM practices. NCTM. 

Koh, S., Lee, J., Lee, S., Cha, S., Kim, Y., Oh, T., & Cho, S. (2018). Mathematics II. 

Sinsago Publication. 

Korea Textbook Research Foundation (n.d.). Downloading the list of the approved titles. 

Retrieved September 11, 2023 from https://www.kotry.kr/ 

Kwon, O., Shin, J., Jeon, I., Kim, M., Kim, C., Kim, T., Park, J., Park, J., Park, J., Park, C., 

Park, H., Oh, K., Cho, K., Cho, S., & Hwang, S. (2018). Mathematics II. Kyohaksa 

Publication. 

Krummheuer, G. (1995). The ethnography of argumentation. In P. Cobb & H. Bauersfeld (Eds.), 

The emergence of mathematical meaning: Interaction in classroom cultures 

(pp. 229–269). Erlbaum.  

Lakatos, I. (1976). Proofs and refutations. Cambridge University Press. 

Lee, J., Choi, B., Kim, D., Lee, J., Jeon, C., Jang, H., Song, Y., Song, J., Kim, S., & Kim, 

M. (2018). Mathematics II. Chunjae Publication. 

Lew, H., Sunwoo, H., Shin, B., Cho, J., Lee, B., Kim, Y., Lim, M., Han, M., Nam, S., Kim, 

M., & Jung, S. (2018). Mathematics II. Chunjae Publication. 

McCory, R., & Stylianides, A. J. (2014). Reasoning-and-proving in mathematics textbooks 

for prospective elementary teachers. International Journal of Educational Research, 

64, 119–131. https://doi.org/10.1016/j.ijer.2013.09.003 

Ministry of Education [MoE]. (2015). 2015 revised mathematics curriculum. MoE. 

MoE. (2022). 2022 revised mathematics curriculum. MoE. 



INVESTIGATING THE SUBSTANCE AND ACCEPTABILITY OF 

EMPIRICAL ARGUMENTS 

91 

Miyakawa, T. (2017). Comparative analysis on the nature of proof to be taught in geometry: 

The cases of French and Japanese lower secondary schools. Educational Studies in 

Mathematics, 94(1), 37–54. https://doi.org/10.1007/s10649-016-9711-x 

National Council of Teachers of Mathematics [NCTM] (2000). Principles and standards 

for school mathematics. NCTM. 

Otten, S., Males, L. M., & Gilbertson, N. J. (2014). The introduction of proof in secondary 

geometry textbooks. International Journal of Educational Research, 64, 107–118. 

https://doi.org/10.1016/j.ijer.2013.08.006 

Park, K., Lee, J., Kim, J., Nam, C., Kim, N., Lim, J., Yoo, E., Kwon, S., Kim, S., Kim, J., 

Kim, K., Yoon, H., Koh, H., Yoon, H., Kim, Y., Kim, H., Lee, K., Cho, Y., Lee, J., 

& Yang, J. (2018). Mathematics II. Donga Publication. 

Schoenfeld, A. H. (1988). When good teaching leads to bad results: The disasters of ‘well-

taught’ mathematics courses. Educational Psychologist, 23(2), 145-166. 

https://doi.org/10.1207/s15326985ep2302_5 

Schoenfeld, A. H. (1994). What do we know about mathematics curricula? The Journal of 

Mathematical Behavior, 13(1), 55–80. https://doi.org/10.1016/0732-3123(94)90035-3 

Schoenfeld, A. H. (2009). The soul of mathematics. In D. A. Stylianou, M. L. Blanton, & 

E. J. Knuth (Eds.), Teaching and learning proof across the grades: A K-16 

perspective (pp. xii–xvi). Routledge. 

Stein, M. K., Remillard, J., & Smith, M. S. (2007). How curriculum influences student 

learning. In F. K. Lester (Ed.), Second handbook of research on mathematics 

teaching and learning (pp. 319-370). NCTM. 

Selden, J., & Selden, A. (1995). Unpacking the logic of mathematical 

statements. Educational Studies in Mathematics, 29(2), 123-151. https://doi.org/ 

10.1007/BF01274210 

Stylianides, G. J. (2008). Investigating the guidance offered to teachers in curriculum 

materials: The case of proof in mathematics. International Journal of Science and 

Mathematics Education, 6, 191-215. https://doi.org/10.1007/s10763-007-9074-y 

Stylianides, G. J. (2009). Reasoning-and-proving in school mathematics textbooks. 

Mathematical Thinking and Learning, 11(4), 258–288. https://doi.org/10.1080/ 

10986060903253954 

Stylianides, G. J. (2014). Textbook analyses on reasoning-and-proving: Significance and 

methodological challenges. International Journal of Educational Research, 64, 63–

70. https://doi.org/10.1016/j.ijer.2014.01.002 

Stylianides, G. J., & Stylianides, A. J. (2014). The role of instructional engineering in 

reducing the uncertainties of ambitious teaching. Cognition and Instruction, 32(4), 

374-415. https://doi.org/10.1080/07370008.2014.948682 

Stylianou, D. A., & Blanton, M. L. (2011). Connecting research to teaching: Developing 

students’ capacity for constructing proofs through discourse. The Mathematics 

Teacher, 105(2), 140-145. https://doi.org/10.5951/mathteacher.105.2.0140 

Thompson, D. R., Senk, S. L., & Johnson, G. J. (2012). Opportunities to learn reasoning 

and proof in high school mathematics textbooks. Journal for Research in 

Mathematics Education, 43(3), 253–295. https://doi.org/10.5951/jresematheduc.43.3.0253 

https://doi.org/
https://doi.org/10.1080/


92 Kim 

Toulmin, S. (1958). The uses of argument. Cambridge University Press. 

Umland, K., & Sriraman, B. (2014). Argumentation in Mathematics. In S. Lerman (Ed.), 

Encyclopedia of mathematics education (pp. 46-48). Springer Dordrecht. 

https://doi.org/10.1007/978-94-007-4978-8_11 

Valverde, G. A., Bianchi, L. J., Wolfe, R. G., Schmidt, W. H., & Houang, R. T. 

(2002). According to the book: Using TIMSS to investigate the translation of policy 

into practice through the world of textbooks. Springer Science & Business Media. 

Weber, K. (2014). Proof as a cluster concept. In P. Liljedahl, C. Nicol, S., Oesterle, & D. 

Allan (Eds.), Proceedings of the Joint Meeting of PME 38 and PME-NA 36 (pp. 353-

360). PME. 

Yackel, E., & Cobb, P. (1996). Sociomathematical norms, argumentation, and autonomy 

in mathematics. Journal for Research in Mathematics Education, 27(4), 458-477. 

https://doi.org/10.5951/jresematheduc.27.4.0458 

 

 


