Bull. Korean Math. Soc. **61** (2024), No. 2, pp. 519–527 https://doi.org/10.4134/BKMS.b230215 pISSN: 1015-8634 / eISSN: 2234-3016

RESOLUTION OF QUOTIENT SINGULARITIES VIA G-CONSTELLATIONS

SEUNG-JO JUNG

ABSTRACT. For a finite subgroup G of $\operatorname{GL}_n(\mathbb{C})$, the moduli space \mathcal{M}_{θ} of θ -stable G-constellations is rarely smooth. This note shows that for a group G of type $\frac{1}{r}(1, a, b)$ with r = abc + a + b, there is a generic stability parameter $\theta \in \Theta$ such that the birational component Y_{θ} of θ stable G-constellations provides a resolution of the quotient singularity $X := \mathbb{C}^3/G$.

1. Introduction

For a finite subgroup G of $\operatorname{GL}_n(\mathbb{C})$, a G-equivariant sheaf \mathcal{F} on \mathbb{C}^n with $\operatorname{H}^0(\mathcal{F})$ isomorphic to the regular representation $\mathbb{C}[G]$ of G is called a G-constellation. The GIT parameter space for G-constellations is defined to be

$$\Theta = \{ \theta \in \operatorname{Hom}_{\mathbb{Z}}(R(G), \mathbb{Q}) \mid \theta (\mathbb{C}[G]) = 0 \},\$$

where R(G) is the representation space of G. For $\theta \in \Theta$, we say that:

- (i) a *G*-constellation \mathcal{F} is θ -(*semi*)stable if $\theta(\mathcal{G}) \ge 0$ ($\theta(\mathcal{G}) > 0$) for every proper subsheaf \mathcal{G} of \mathcal{F} .
- (ii) θ is generic if every θ -semistable *G*-constellation is θ -stable.

The moduli spaces of θ -stable *G*-constellations provide good birational models of the quotient variety \mathbb{C}^n/G . For example, for $G \subset \mathrm{SL}_3(\mathbb{C})$ and generic θ , the moduli space of θ -stable *G*-constellations is a crepant resolution of \mathbb{C}^n/G (see [1, 2, 7, 9]). However, it is very rare for the moduli space of stable *G*constellations to be smooth.

This note proves that for some abelian groups in $\operatorname{GL}_3(\mathbb{C})$, there is a generic stability parameter $\theta \in \Theta$ such that Y_{θ} is a resolution of the quotient singularity $X := \mathbb{C}^3/G$.

Theorem 1.1 (Main Theorem). Let $G \subset GL_3(\mathbb{C})$ be the finite group of type $\frac{1}{r}(1, a, b)$ with r = abc + a + b, where a, b, c are positive integers and b is coprime

This work was partially supported by NRF grant (NRF-2021R1C1C1004097) of the Korean government.

O2024Korean Mathematical Society

Received April 7, 2023; Accepted July 24, 2023.

²⁰²⁰ Mathematics Subject Classification. 14B05, 14J17.

 $Key\ words\ and\ phrases.\ G$ -constellations, quotient singularities.

to a. Then the birational component Y_{θ} of θ -stable G-constellations is smooth for a suitable parameter θ .

Acknowledgement. I would like to thank the referees for many valuable comments and corrections.

2. Moduli spaces of G-constellations and G-bricks

Through this section, we consider the group G of type $\frac{1}{r}(1, a, b)$, that is,

$$G = \langle \operatorname{diag}(\epsilon, \epsilon^a, \epsilon^b) \mid \epsilon^r = 1 \rangle \subset \operatorname{GL}_3(\mathbb{C}).$$

As G is abelian, the set of irreducible representations of G can be identified with the character group $G^{\vee} := \operatorname{Hom}(G, \mathbb{C}^{\times})$ of G. With this identification, we say that an irreducible representation ρ is of weight i if ρ maps diag $(\epsilon, \epsilon^a, \epsilon^b)$ to ϵ^i , where $0 \leq i < r$. In this case, we let wt (ρ) denote the weight of ρ and ρ_i the representation of weight i.

Set $\overline{L} = \mathbb{Z}^3$ and define the lattice

$$L = \overline{L} + \mathbb{Z} \cdot \frac{1}{r}(1, a, b).$$

We may identify the dual lattices $\overline{M} = \operatorname{Hom}_{\mathbb{Z}}(\overline{L}, \mathbb{Z})$ and $M = \operatorname{Hom}_{\mathbb{Z}}(L, \mathbb{Z})$ with Laurent monomials and *G*-invariant Laurent monomials, respectively. There is a surjective homomorphism

$$\mathrm{wt}\colon \overline{M} \longrightarrow G^{\vee}$$

induced by the embedding of G into the torus $(\mathbb{C}^{\times})^3 \subset \mathrm{GL}_3(\mathbb{C})$.

Let $\overline{M}_{>0}$ denote genuine monomials in \overline{M} , i.e.,

$$\overline{M}_{>0} = \{ x_1^{m_1} x_2^{m_2} x_3^{m_3} \in \overline{M} \mid m_i \ge 0 \text{ for all } i \}.$$

For a subset A of Laurent monomials, let $\langle A \rangle$ denote the $\mathbb{C}[x_1, x_2, x_3]$ -submodule of $\mathbb{C}[x_1^{\pm}, x_2^{\pm}, x_3^{\pm}]$ generated by A.

Let σ_+ be the cone generated by $\{e_1, e_2, e_3\}$, where $\{e_1, e_2, e_3\}$ is the standard basis of $\overline{L} = \mathbb{Z}^3$. By toric geometry, the quotient variety $X = \mathbb{C}^3/G$ is isomorphic to $U_{\sigma_+} = \operatorname{Spec} \mathbb{C}[\sigma_+^{\vee} \cap M]$.

2.1. *G*-constellations

Definition 2.1. A *G*-constellation on \mathbb{C}^3 is a *G*-equivariant coherent sheaf \mathcal{F} on \mathbb{C}^3 with $\mathrm{H}^0(\mathcal{F})$ isomorphic to $\mathbb{C}[G]$ as a *G*-representation.

With the following GIT stability parameter space

$$\Theta = \left\{ \theta \in \operatorname{Hom}_{\mathbb{Z}}(R(G), \mathbb{Q}) \, \middle| \, \theta \left(\mathbb{C}[G] \right) = 0 \right\},\$$

we define the stability of G-constellations as follows.

Definition 2.2. For $\theta \in \Theta$ and a *G*-constellation \mathcal{F} , we say that:

(i) *F* is θ-semistable if θ(*G*) ≥ 0 for every nonzero proper subsheaf *G* of *F*.

G-CONSTELLATIONS

- (ii) \mathcal{F} is θ -stable if $\theta(\mathcal{G}) > 0$ for every nonzero proper subsheaf \mathcal{G} of \mathcal{F} .
- (iii) $\theta \in \Theta$ is generic if every θ -semistable G-constellation is θ -stable.

Let θ be generic. By King's result in [6], there is a quasiprojective scheme \mathcal{M}_{θ} which is a fine moduli space of θ -stable *G*-constellations. Moreover by [3, Theorem 1.1], the moduli space \mathcal{M}_{θ} has a distinguished component Y_{θ} birational to \mathbb{C}^3/G and that there is a projective morphism $Y_{\theta} \to \mathbb{C}^3/G$ obtained by variation of GIT quotient.

Definition 2.3. The unique irreducible component Y_{θ} is called the *birational* component of the moduli space \mathcal{M}_{θ} .

2.2. G-bricks and the birational component Y_{θ}

To describe the affine local charts of the birational component Y_{θ} , we introduce the notion of *G*-bricks (see [4]).

Definition 2.4. A subset Γ of Laurent monomials is called a *G*-prebrick if:

- (i) the monomial $\mathbf{1}$ is in Γ ;
- (ii) there exists a unique Laurent monomial $\mathbf{m}_{\rho} \in \Gamma$ of weight ρ for each weight $\rho \in G^{\vee}$.
- (iii) if $\mathbf{p'} \cdot \mathbf{p} \cdot \mathbf{m}_{\rho} \in \Gamma$ for $\mathbf{m}_{\rho} \in \Gamma$ and $\mathbf{p}, \mathbf{p'} \in \overline{M}_{\geq 0}$, then $\mathbf{p} \cdot \mathbf{m}_{\rho} \in \Gamma$;
- (iv) the set Γ is connected in the sense that for any element \mathbf{m}_{ρ} , there is a (fractional) path in Γ from \mathbf{m}_{ρ} to **1** whose steps consist of multiplying or dividing by one of x_i .

For $\mathbf{m} \in \overline{M}$, we define $\operatorname{wt}_{\Gamma}(\mathbf{m})$ to be the unique element \mathbf{m}_{ρ} in Γ of the same weight as \mathbf{m} .

For a *G*-prebrick $\Gamma = {\mathbf{m}_{\rho}}$, let $S(\Gamma)$ denote the subsemigroup of *M* generated by

$$\frac{\mathbf{n} \cdot \mathbf{m}_{\rho}}{\operatorname{wt}_{\Gamma}(\mathbf{n} \cdot \mathbf{m}_{\rho})}$$

for all $\mathbf{n} \in \overline{M}_{\geq 0}$, $\mathbf{m}_{\rho} \in \Gamma$. It turns out that the semigroup $S(\Gamma)$ is finitely generated. Thus $S(\Gamma)$ defines a (not-necessarily-normal) affine toric variety $U(\Gamma) := \operatorname{Spec} \mathbb{C}[S(\Gamma)].$

Definition 2.5. A *G*-prebrick Γ is called a *G*-brick if $U(\Gamma)$ contains a torus fixed point.

For a G-brick Γ , we define

$$C(\Gamma) := \langle \Gamma \rangle / \langle B(\Gamma) \rangle,$$

where $B(\Gamma) := \{x_i \cdot \mathbf{m}_{\rho} \mid \mathbf{m}_{\rho} \in \Gamma\} \setminus \Gamma$. The module $C(\Gamma)$ becomes a torus invariant *G*-constellation.

Remark 2.6. The *G*-brick Γ is a \mathbb{C} -basis of *G*-constellations over $U(\Gamma)$. Moreover, a submodule \mathcal{G} of $C(\Gamma)$ is determined by a subset $A \subset \Gamma$, which forms a \mathbb{C} -basis of \mathcal{G} . This makes it easy to determine whether $C(\Gamma)$ is θ -stable or not. S.-J. JUNG

Definition 2.7. A *G*-brick Γ is said to be θ -stable if $C(\Gamma)$ is θ -stable.

Definition 2.8. Let G be a finite diagonal group $G \subset GL_3(\mathbb{C})$. Assume that we have a proper birational morphism $Y \to X := \mathbb{C}^3/G$ with a normal toric variety Y. Let Σ_{\max} be the set of the 3-dimensional cones in the fan of Y. A *G*-brickset for Y is a set \mathfrak{S} of *G*-bricks satisfying:

(i) there is a bijective map $\Sigma_{\max} \to \mathfrak{S}$ sending σ to Γ_{σ} ;

(ii) $S(\Gamma_{\sigma}) = \sigma^{\vee} \cap M$.

Lemma 2.9 ([5, Proposition 2.16]). Let Y be a normal toric variety with a proper birational morphism $Y \to X := \mathbb{C}^3/G$. Assume that there exist:

- (i) a G-brickset \mathfrak{S} for $Y \to X$, and
- (ii) a generic stability parameter θ such that $\Gamma \in \mathfrak{S}$ is θ -stable.

Then Y is isomorphic to Y_{θ} .

3. Main result

In this section, we assume that G is the finite group of type $\frac{1}{r}(1, a, b)$ with r = abc + a + b, where a, b, c are positive integers and b is coprime to a. We may assume that a < b. We apply the methods in [5] for this case to prove the main theorem. For the convenience, set $a_1 = 1$, $a_2 = a$, $a_3 = b$.

3.1. Star subdivisions at v and the resolution

Recall the lattice

$$L = \mathbb{Z}^3 + \mathbb{Z} \cdot \frac{1}{r}(1, a, b),$$

and the cone $\sigma_+ = \text{Cone}(e_1, e_2, e_3)$. Let X_v be the corresponding to the star subdivision of σ_+ at the lattice point $v = \frac{1}{r}(1, a, b)$, i.e., the fan of X_v consists of the following cones

 $\sigma_1 = \text{Cone}(v, e_2, e_3), \quad \sigma_2 = \text{Cone}(e_1, v, e_3), \quad \sigma_3 = \text{Cone}(e_1, e_2, v).$

Let U_k denote the affine toric variety corresponding to σ_k .

Let L_1 , L_2 and L_3 be the sublattices of L generated by $\{v, e_2, e_3\}$, $\{e_1, v, e_3\}$ and by $\{e_1, e_2, v\}$, respectively. Let M_k denote the dual lattice of L_k . Note that M_2 has the dual basis $\{\zeta_1, \zeta_2, \zeta_3\}$ and M_3 has the dual basis $\{\eta_1, \eta_2, \eta_3\}$, where

$$\begin{aligned} \xi_1 &= x_1 x_2^{-\frac{1}{a}}, \quad \xi_2 = x_2^{\frac{r}{a}}, \quad \xi_3 = x_3 x_2^{-\frac{b}{a}}, \\ \eta_1 &= x_1 x_3^{-\frac{1}{b}}, \quad \eta_2 = x_2 x_3^{-\frac{a}{b}}, \quad \eta_3 = x_3^{-\frac{r}{b}}. \end{aligned}$$

Note that the lattice inclusion $L_k \hookrightarrow L$ induces a toric morphism

$$\overline{\tau}_k \colon \operatorname{Spec} \mathbb{C}[\sigma_k^{\vee} \cap M_k] \to U_k := \operatorname{Spec} \mathbb{C}[\sigma_2^{\vee} \cap M]$$

with $\operatorname{Spec} \mathbb{C}[\sigma_k^{\vee} \cap M_k] \cong \mathbb{C}^3$ and $U_k \cong \mathbb{C}^3/G_k$, where $G_k := L/L_k$. Thus we have:

(i) U_1 is smooth.

G-CONSTELLATIONS

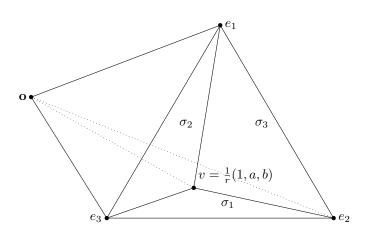


FIGURE 3.1. Star subdivision at v

- (ii) U_2 is \mathbb{C}^3/G_2 , where G_2 is of type $\frac{1}{a}(1, -b, b)$. (iii) U_3 is \mathbb{C}^3/G_3 , where G_3 is of type $\frac{1}{b}(1, a, -a)$.

Note that U_2 and U_3 are terminal 3-fold quotient singularities. Since X_v has only terminal singularities, X_v is the relative minimal model over $X = \mathbb{C}^3/G$.

Since each terminal 3-fold quotient singularity has an economic resolution (see [8]), we have the following three resolutions of singularities:

- (i) $\overline{\varphi}_1 \colon Y_1 \to U_1 = \mathbb{C}^3;$ (ii) $\overline{\varphi}_2 \colon Y_2 \to U_2 = \mathbb{C}^3/G_2;$ (iii) $\overline{\varphi}_3 \colon Y_3 \to U_3 = \mathbb{C}^3/G_3,$

which induce a projective birational morphism $\varphi \colon Y \to X$ factoring through X_v fitting into the following commutative diagram:

$$Y \xrightarrow{\overline{\varphi}} X_v$$

$$\swarrow \qquad \downarrow$$

$$X.$$

In what follows, we find a moduli description of the resolution Y in terms of G-constellations.

3.2. Round down functions for star subdivisions

Definition 3.1 (Round down functions). The round down functions

$$\phi_2 \colon \overline{M} \to M_2, \quad \phi_3 \colon \overline{M} \to M_3$$

for the star subdivision at $\frac{1}{r}(1, a, b)$ are defined by

$$\phi_2(x_1^{m_1}x_2^{m_2}x_3^{m_3}) = \xi_1^{m_1}\xi_2^{\lfloor \frac{1}{r}(m_1+am_2+bm_3) \rfloor}\xi_3^{m_3},$$

S.-J. JUNG

$$\phi_3(x_1^{m_1}x_2^{m_2}x_3^{m_3}) = \eta_1^{m_1}\eta_2^{m_2}\eta_3^{\lfloor \frac{1}{r}(m_1+am_2+bm_3)\rfloor},$$

where $\lfloor \ \rfloor$ is the floor function. For a G_k -brick Γ' , we define

$$\phi_k^{\star}(\Gamma') := \{ \mathbf{m} \in \overline{M} \, \big| \, \phi_k(\mathbf{m}) \in \Gamma' \}.$$

Proposition 3.2 ([4, Proposition 4.5]). For a G_k -brick Γ' , the set $\Gamma := \phi_k^*(\Gamma')$ is a G-brick with $S(\Gamma) = S(\Gamma')$. For $\mathbf{m} \in \overline{M}$, we have

$$\operatorname{wt}_{\Gamma'}\left(\phi_k(\mathbf{m})\right) = \phi_k\left(\operatorname{wt}_{\Gamma}(\mathbf{m})\right).$$

The key theorem in [5] is the following.

Theorem 3.3 ([5, Theorem 3.12]). Assume that each $Y_k \to U_k$ has a G_k -brickset \mathfrak{S}_k . Define

$$\mathfrak{S} := \bigcup_{k} \left\{ \phi_{k}^{\star}(\Gamma') \, \big| \, \Gamma' \in \mathfrak{S}_{k} \right\}.$$

Then \mathfrak{S} is a G-brickset for the morphism $Y \to X$.

For a monomial **m** of weight $\rho \in G^{\vee}$, we define $\phi_k(\rho)$ is the weight of $\phi_k(\mathbf{m})$. This induces a well-defined surjective map

(3.4)
$$\phi_k \colon G^{\vee} \to G_k^{\vee}, \quad \mathrm{wt}(\mathbf{m}) \mapsto \mathrm{wt}(\phi_k(\mathbf{m})).$$

From this, we define the linear map

$$(\phi_k)_\star \colon \Theta \to \Theta^{(k)}$$

defined by

(3.5)
$$[(\phi_k)_{\star}(\theta)](\chi) = \sum_{\phi_k(\rho) = \chi} \theta(\rho) \text{ for } \chi \in G_k^{\vee}.$$

Lemma 3.6 ([5, Lemma 3.16]). Suppose that we have $\theta^{(2)} \in \Theta^{(2)}$ and $\theta^{(3)} \in \Theta^{(3)}$. Then there is $\theta_P \in \Theta$ satisfying

(3.7)
$$(\phi_k)_{\star}(\theta_P) \equiv \theta^{(k)} \quad for \ all \ k.$$

3.3. Proof of the main theorem

Through this section, we prove the following theorem. Recall we set $a_1 = 1$, $a_2 = a$, $a_3 = b$.

Theorem 3.8 (Main Theorem). Let $G \subset GL_3(\mathbb{C})$ be the finite group of type $\frac{1}{r}(1, a, b)$ with r = abc + a + b, where a, b, c are positive integers and b is coprime to a. Then the birational component Y_{θ} of θ -stable G-constellations is smooth for a suitable parameter θ .

For the smooth model $Y \to X$ constructed in Section 3.1 above, recall we have

$$\overline{\varphi}_2 \colon Y_2 \to U_2 = \mathbb{C}^3/G_2, \quad \overline{\varphi}_3 \colon Y_3 \to U_3 = \mathbb{C}^3/G_3$$

which are the economic resolutions of U_2 and U_3 , respectively.

By [4, Theorem 4.19], the economic resolution of a terminal 3-fold quotient singularity \mathbb{C}^3/G' is isomorphic to the birational components of stable G'-constellations. This means for $k \in \{2,3\}$, we have a G_k -brickset \mathfrak{S}_k for $Y_k \to U_k$ such that $\Gamma \in \mathfrak{S}_k$ is $\theta^{(k)}$ -stable.

Combining this with Theorem 3.3, we have a G-brickset

(3.9)
$$\mathfrak{S} := \bigcup_{k} \left\{ \phi_{k}^{\star}(\Gamma') \, \big| \, \Gamma' \in \mathfrak{S}_{k} \right\}$$

for the morphism $Y \to X$. Thus by Lemma 2.9, it is enough to find generic $\theta \in \Theta$ such that every $\Gamma \in \mathfrak{S}$ is θ -stable.

Lemma 3.10. For a *G*-brick Γ in \mathfrak{S} , let $A \subset \Gamma$ be a \mathbb{C} -basis of a submodule \mathcal{G} of $C(\Gamma)$. Assume that

$$A \neq \phi_k^{-1}(\phi_k(A)) := \{ \mathbf{m} \in \overline{M} \, | \, \phi_k(\mathbf{m}) \in \phi_k(A) \}.$$

- (i) If \mathbf{m}_{ρ} is in $\phi_k^{-1}(\phi_k(A)) \setminus A$, then $0 \leq \operatorname{wt}(\rho) < r a_k$.
- (ii) There is a monomial \mathbf{m}_{ρ} of weight ρ in $\phi_k^{-1}(\phi_k(A)) \setminus A$ with $0 \leq \operatorname{wt}(\rho) < a_k$.

Proof. For (i), assume that \mathbf{m}_{ρ} is in $\phi_k^{-1}(\phi_k(A)) \setminus A$. From the definition of ϕ_k , we have $\phi_k(x_k^l \cdot \mathbf{m}_{\rho}) = \phi_k(\mathbf{m}_{\rho})$ for l > 0. This is equivalent to that $0 \leq \operatorname{wt}(\rho) < r - a_k l$.

For (ii), assume that **m** is in $\phi_k^{-1}(\phi_k(A)) \setminus A$. Choose $l := \lfloor \frac{\operatorname{wt}(\mathbf{m})}{a_k} \rfloor$ and set \mathbf{m}_{ρ} to be the monomial with $\mathbf{m} = x_k^l \cdot \mathbf{m}_{\rho}$. Then we have $\phi_k(\mathbf{m}_{\rho}) = \phi_k(\mathbf{m})$ with $\operatorname{wt}(\mathbf{m}_{\rho}) < a_k$.

Lemma 3.11. Let $\psi \in \Theta$ be the GIT parameter defined by

(3.12)
$$\psi(\rho) = \begin{cases} -1 & \text{if } 0 \le \operatorname{wt}(\rho) < b, \\ 1 & \text{if } r - b \le \operatorname{wt}(\rho) < r, \\ 0 & \text{otherwise.} \end{cases}$$

Then ψ satisfies the following:

- (i) For every ρ with $0 \leq \operatorname{wt}(\rho) < b$, we have $\psi(\rho) < 0$.
- (ii) For each k and for every $\chi \in G_k^{\vee}$, we have

$$\sum_{\phi_k(\rho)=\chi} \psi(\rho) = 0$$

Proof. From the definition of ψ , (i) follows. We prove (ii) for the case k = 2. First note that $\phi_2(\rho) = \chi$ if and only if $\operatorname{wt}(\rho) \equiv \operatorname{wt}(\chi) \pmod{a}$. Since r = abc+a+b, we have i and i+(r-b) are equivalent modulo a. Thus for $0 \le i < b$, we get $\phi_2(\rho_i) = \phi_2(\rho_{i+r-b})$ and $\psi(\rho_i) + \psi(\rho_{i+r-b}) = 0$. This proves (ii).

Remark 3.13. Here, (ii) means that for any monomial \mathbf{m} we have

$$\sum_{\phi_k(\rho)=\phi_k(\mathbf{m})}\psi(\rho)=0$$

Theorem 3.14. Fix $\theta_P \in \Theta$ satisfying (3.7). For a sufficiently large m, set

 $\theta := \theta_P + m\psi.$

Then every G-brick $\Gamma \in \mathfrak{S}$ defined by (3.9) is θ -stable.

Proof. Let σ be the corresponding cone to the *G*-brick Γ . Then σ is contained in one of the cones $\sigma_1, \sigma_2, \sigma_3$.

Suppose that $\sigma \subset \sigma_1$. This means that $\sigma = \sigma_1$ and

$$\Gamma = \{1, x_1, x_1^2, \dots, x_1^{r-2}, x_1^{r-1}\}$$

Any nonzero proper submodule of $C(\Gamma)$ has a \mathbb{C} -basis of the form

$$A = \{x_1^j, x_1^{j+1}, \dots, x_1^{r-2}, x_1^{r-1}\}$$

for $1 \le j < r$. Since $\psi(A) > 0$, Γ is θ -stable for $m \gg 0$.

Let us assume that $\sigma \subset \sigma_k$. Then we have the corresponding G_k -brick Γ' to Γ , i.e., $\Gamma = \phi_k^*(\Gamma') = \{\mathbf{m} \in \overline{M} \mid \phi_k(\mathbf{m}) \in \Gamma'\}$. Let \mathcal{G} be a nonzero proper submodule \mathcal{G} of $C(\Gamma)$. We need to show that $\theta(\mathcal{G}) > 0$. Let $A \subsetneq \Gamma$ be a \mathbb{C} -basis of \mathcal{G} . We have the following two cases:

(1):
$$A \subsetneq \phi_k^{-1}(\phi_k(A))$$
 or (2): $A = \phi_k^{-1}(\phi_k(A))$.

In case (1), by Remark 3.13 and Lemma 3.10, we have

$$\sum_{\rho \in \phi_k^{-1}(\phi_k(A))} \psi(\rho) = 0, \text{ and } \sum_{\rho \in \phi_k^{-1}(\phi_k(A)) \setminus A} \psi(\rho) < 0.$$

Therefore $\psi(\mathcal{G}) > 0$ and $\theta(\mathcal{G}) > 0$ for sufficiently large *m*.

In case (2), by (ii) of Lemma 3.11, we have $\psi(\mathcal{G}) = 0$. Note that $\phi_k(A)$ defines a nonzero proper submodule \mathcal{G}' of $C(\Gamma')$. Since $C(\Gamma')$ is $\theta^{(k)}$ -stable, we have $\theta^{(k)}(\mathcal{G}') > 0$. From (3.7), we have $\theta(\mathcal{G}) = \theta^{(k)}(\mathcal{G}') > 0$.

Corollary 3.15. With the notation above, the birational component Y_{θ} is isomorphic to Y defined in Section 3.1.

This completes the proof of Theorem 3.8.

References

- T. Bridgeland, A. King, and M. Reid, The McKay correspondence as an equivalence of derived categories, J. Amer. Math. Soc. 14 (2001), no. 3, 535-554. https://doi.org/10. 1090/S0894-0347-01-00368-X
- [2] A. Craw and A. Ishii, Flops of G-Hilb and equivalences of derived categories by variation of GIT quotient, Duke Math. J. 124 (2004), no. 2, 259–307. https://doi.org/10.1215/ S0012-7094-04-12422-4
- [3] A. Craw, D. Maclagan, and R. R. Thomas, Moduli of McKay quiver representations. I. The coherent component, Proc. Lond. Math. Soc. (3) 95 (2007), no. 1, 179–198. https: //doi.org/10.1112/plms/pdm009
- [4] S.-J. Jung, Terminal quotient singularities in dimension three via variation of GIT, J. Algebra 468 (2016), 354–394. https://doi.org/10.1016/j.jalgebra.2016.08.032
- [5] S.-J. Jung, On the Craw-Ishii conjecture, J. Pure Appl. Algebra 222 (2018), no. 7, 1579–1605. https://doi.org/10.1016/j.jpaa.2017.07.013

G-CONSTELLATIONS

- [6] A. D. King, Moduli of representations of finite-dimensional algebras, Quart. J. Math. Oxford Ser. (2) 45 (1994), no. 180, 515-530. https://doi.org/10.1093/qmath/45.4.515
- [7] I. Nakamura, *Hilbert schemes of abelian group orbits*, J. Algebraic Geom. **10** (2001), no. 4, 757–779.
- [8] M. Reid, Young person's guide to canonical singularities, in Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), 345–414, Proc. Sympos. Pure Math., 46, Part 1, Amer. Math. Soc., Providence, RI, 1987. https://doi.org/10.1090/pspum/046.1/927963
- [9] R. Yamagishi, Moduli of G-constellations and crepant resolutions II: the Craw-Ishii conjecture, in preprint, arxiv:arXiv:2209.11901.

SEUNG-JO JUNG DEPARTMENT OF MATHEMATICS EDUCATION, AND INSTITUTE OF PURE AND APPLIED MATHEMATICS JEONBUK NATIONAL UNIVERSITY JEONJU 54896, KOREA Email address: seungjo@jbnu.ac.kr