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RESOLUTION OF QUOTIENT SINGULARITIES VIA

G-CONSTELLATIONS

Seung-Jo Jung

Abstract. For a finite subgroup G of GLn(C), the moduli space Mθ

of θ-stable G-constellations is rarely smooth. This note shows that for

a group G of type 1
r
(1, a, b) with r = abc + a + b, there is a generic

stability parameter θ ∈ Θ such that the birational component Yθ of θ-
stable G-constellations provides a resolution of the quotient singularity

X := C3/G.

1. Introduction

For a finite subgroup G of GLn(C), a G-equivariant sheaf F on Cn with
H0(F) isomorphic to the regular representation C[G] of G is called a G-constel-
lation. The GIT parameter space for G-constellations is defined to be

Θ =
{
θ ∈ HomZ(R(G),Q)

∣∣ θ (C[G]) = 0
}
,

where R(G) is the representation space of G. For θ ∈ Θ, we say that:

(i) a G-constellation F is θ-(semi)stable if θ(G) ≥ 0 (θ(G) > 0) for every
proper subsheaf G of F .

(ii) θ is generic if every θ-semistable G-constellation is θ-stable.

The moduli spaces of θ-stable G-constellations provide good birational mod-
els of the quotient variety Cn/G. For example, for G ⊂ SL3(C) and generic θ,
the moduli space of θ-stable G-constellations is a crepant resolution of Cn/G
(see [1, 2, 7, 9]). However, it is very rare for the moduli space of stable G-
constellations to be smooth.

This note proves that for some abelian groups in GL3(C), there is a generic
stability parameter θ ∈ Θ such that Yθ is a resolution of the quotient singularity
X := C3/G.

Theorem 1.1 (Main Theorem). Let G ⊂ GL3(C) be the finite group of type
1
r (1, a, b) with r = abc+a+b, where a, b, c are positive integers and b is coprime
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to a. Then the birational component Yθ of θ-stable G-constellations is smooth
for a suitable parameter θ.

Acknowledgement. I would like to thank the referees for many valuable
comments and corrections.

2. Moduli spaces of G-constellations and G-bricks

Through this section, we consider the group G of type 1
r (1, a, b), that is,

G = ⟨diag(ϵ, ϵa, ϵb)
∣∣ ϵr = 1⟩ ⊂ GL3(C).

As G is abelian, the set of irreducible representations of G can be identified
with the character group G∨ := Hom(G,C×) of G. With this identification, we
say that an irreducible representation ρ is of weight i if ρ maps diag(ϵ, ϵa, ϵb)
to ϵi, where 0 ≤ i < r. In this case, we let wt(ρ) denote the weight of ρ and ρi
the representation of weight i.

Set L = Z3 and define the lattice

L = L+ Z · 1
r
(1, a, b).

We may identify the dual latticesM = HomZ(L,Z) andM = HomZ(L,Z) with
Laurent monomials and G-invariant Laurent monomials, respectively. There is
a surjective homomorphism

wt: M −→ G∨

induced by the embedding of G into the torus (C×)3 ⊂ GL3(C).
Let M≥0 denote genuine monomials in M , i.e.,

M≥0 = {xm1
1 xm2

2 xm3
3 ∈M

∣∣mi ≥ 0 for all i}.
For a subset A of Laurent monomials, let ⟨A⟩ denote the C[x1, x2, x3]-sub-
module of C[x±1 , x

±
2 , x

±
3 ] generated by A.

Let σ+ be the cone generated by {e1, e2, e3}, where {e1, e2, e3} is the stan-
dard basis of L = Z3. By toric geometry, the quotient variety X = C3/G is
isomorphic to Uσ+ = SpecC[σ∨

+ ∩M ].

2.1. G-constellations

Definition 2.1. A G-constellation on C3 is a G-equivariant coherent sheaf F
on C3 with H0(F) isomorphic to C[G] as a G-representation.

With the following GIT stability parameter space

Θ =
{
θ ∈ HomZ(R(G),Q)

∣∣ θ (C[G]) = 0
}
,

we define the stability of G-constellations as follows.

Definition 2.2. For θ ∈ Θ and a G-constellation F , we say that:

(i) F is θ-semistable if θ(G) ≥ 0 for every nonzero proper subsheaf G of
F .
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(ii) F is θ-stable if θ(G) > 0 for every nonzero proper subsheaf G of F .
(iii) θ ∈ Θ is generic if every θ-semistable G-constellation is θ-stable.

Let θ be generic. By King’s result in [6], there is a quasiprojective scheme
Mθ which is a fine moduli space of θ-stable G-constellations. Moreover by [3,
Theorem 1.1], the moduli space Mθ has a distinguished component Yθ bira-
tional to C3/G and that there is a projective morphism Yθ → C3/G obtained
by variation of GIT quotient.

Definition 2.3. The unique irreducible component Yθ is called the birational
component of the moduli space Mθ.

2.2. G-bricks and the birational component Yθ

To describe the affine local charts of the birational component Yθ, we intro-
duce the notion of G-bricks (see [4]).

Definition 2.4. A subset Γ of Laurent monomials is called a G-prebrick if:

(i) the monomial 1 is in Γ;
(ii) there exists a unique Laurent monomial mρ ∈ Γ of weight ρ for each

weight ρ ∈ G∨.
(iii) if p′ · p ·mρ ∈ Γ for mρ ∈ Γ and p,p′ ∈M≥0, then p ·mρ ∈ Γ;
(iv) the set Γ is connected in the sense that for any element mρ, there is a

(fractional) path in Γ from mρ to 1 whose steps consist of multiplying
or dividing by one of xi.

For m ∈ M , we define wtΓ(m) to be the unique element mρ in Γ of the same
weight as m.

For a G-prebrick Γ = {mρ}, let S(Γ) denote the subsemigroup of M gener-
ated by

n ·mρ

wtΓ(n ·mρ)

for all n ∈ M≥0, mρ ∈ Γ. It turns out that the semigroup S(Γ) is finitely
generated. Thus S(Γ) defines a (not-necessarily-normal) affine toric variety
U(Γ) := SpecC[S(Γ)].

Definition 2.5. A G-prebrick Γ is called a G-brick if U(Γ) contains a torus
fixed point.

For a G-brick Γ, we define

C(Γ) := ⟨Γ⟩/⟨B(Γ)⟩,
where B(Γ) :=

{
xi · mρ

∣∣mρ ∈ Γ
}
\Γ. The module C(Γ) becomes a torus

invariant G-constellation.

Remark 2.6. The G-brick Γ is a C-basis of G-constellations over U(Γ). More-
over, a submodule G of C(Γ) is determined by a subset A ⊂ Γ, which forms a
C-basis of G. This makes it easy to determine whether C(Γ) is θ-stable or not.



522 S.-J. JUNG

Definition 2.7. A G-brick Γ is said to be θ-stable if C(Γ) is θ-stable.

Definition 2.8. Let G be a finite diagonal group G ⊂ GL3(C). Assume that
we have a proper birational morphism Y → X := C3/G with a normal toric
variety Y . Let Σmax be the set of the 3-dimensional cones in the fan of Y . A
G-brickset for Y is a set S of G-bricks satisfying:

(i) there is a bijective map Σmax → S sending σ to Γσ;
(ii) S(Γσ) = σ∨ ∩M .

Lemma 2.9 ([5, Proposition 2.16]). Let Y be a normal toric variety with a
proper birational morphism Y → X := C3/G. Assume that there exist:

(i) a G-brickset S for Y → X, and
(ii) a generic stability parameter θ such that Γ ∈ S is θ-stable.

Then Y is isomorphic to Yθ.

3. Main result

In this section, we assume that G is the finite group of type 1
r (1, a, b) with

r = abc + a + b, where a, b, c are positive integers and b is coprime to a. We
may assume that a < b. We apply the methods in [5] for this case to prove the
main theorem. For the convenience, set a1 = 1, a2 = a, a3 = b.

3.1. Star subdivisions at v and the resolution

Recall the lattice

L = Z3 + Z · 1
r
(1, a, b),

and the cone σ+ = Cone(e1, e2, e3). Let Xv be the corresponding to the star
subdivision of σ+ at the lattice point v = 1

r (1, a, b), i.e., the fan of Xv consists
of the following cones

σ1 = Cone(v, e2, e3), σ2 = Cone(e1, v, e3), σ3 = Cone(e1, e2, v).

Let Uk denote the affine toric variety corresponding to σk.
Let L1, L2 and L3 be the sublattices of L generated by {v, e2, e3}, {e1, v, e3}

and by {e1, e2, v}, respectively. Let Mk denote the dual lattice of Lk. Note
that M2 has the dual basis {ζ1, ζ2, ζ3} and M3 has the dual basis {η1, η2, η3},
where

ξ1 = x1x
− 1

a
2 , ξ2 = x

r
a
2 , ξ3 = x3x

− b
a

2 ,

η1 = x1x
− 1

b
3 , η2 = x2x

− a
b

3 , η3 = x
− r

b
3 .

Note that the lattice inclusion Lk ↪→ L induces a toric morphism

πk : SpecC[σ∨
k ∩Mk] → Uk := SpecC[σ∨

2 ∩M ]

with SpecC[σ∨
k ∩Mk] ∼= C3 and Uk

∼= C3/Gk, where Gk := L/Lk. Thus we
have:

(i) U1 is smooth.
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Figure 3.1. Star subdivision at v

(ii) U2 is C3/G2, where G2 is of type 1
a (1,−b, b).

(iii) U3 is C3/G3, where G3 is of type 1
b (1, a,−a).

Note that U2 and U3 are terminal 3-fold quotient singularities. Since Xv has
only terminal singularities, Xv is the relative minimal model over X = C3/G.

Since each terminal 3-fold quotient singularity has an economic resolution
(see [8]), we have the following three resolutions of singularities:

(i) φ1 : Y1 → U1 = C3;
(ii) φ2 : Y2 → U2 = C3/G2;
(iii) φ3 : Y3 → U3 = C3/G3,

which induce a projective birational morphism φ : Y → X factoring through
Xv fitting into the following commutative diagram:

Y Xv

X.

φ

φ

In what follows, we find a moduli description of the resolution Y in terms of
G-constellations.

3.2. Round down functions for star subdivisions

Definition 3.1 (Round down functions). The round down functions

ϕ2 : M →M2, ϕ3 : M →M3

for the star subdivision at 1
r (1, a, b) are defined by

ϕ2(x
m1
1 xm2

2 xm3
3 ) = ξm1

1 ξ
⌊ 1
r (m1+am2+bm3)⌋

2 ξm3
3 ,
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ϕ3(x
m1
1 xm2

2 xm3
3 ) = ηm1

1 ηm2
2 η

⌊ 1
r (m1+am2+bm3)⌋

3 ,

where ⌊ ⌋ is the floor function. For a Gk-brick Γ′, we define

ϕ⋆k(Γ
′) := {m ∈M

∣∣ϕk(m) ∈ Γ′}.

Proposition 3.2 ([4, Proposition 4.5]). For a Gk-brick Γ′, the set Γ := ϕ⋆k(Γ
′)

is a G-brick with S(Γ) = S(Γ′). For m ∈M , we have

wtΓ′
(
ϕk(m)

)
= ϕk

(
wtΓ(m)

)
.

The key theorem in [5] is the following.

Theorem 3.3 ([5, Theorem 3.12]). Assume that each Yk → Uk has a Gk-
brickset Sk. Define

S :=
⋃
k

{
ϕ⋆k(Γ

′)
∣∣Γ′ ∈ Sk

}
.

Then S is a G-brickset for the morphism Y → X.

For a monomial m of weight ρ ∈ G∨, we define ϕk(ρ) is the weight of ϕk(m).
This induces a well-defined surjective map

(3.4) ϕk : G
∨ → G∨

k , wt(m) 7→ wt(ϕk(m)).

From this, we define the linear map

(ϕk)⋆ : Θ → Θ(k)

defined by

(3.5) [(ϕk)⋆(θ)](χ) =
∑

ϕk(ρ)=χ

θ(ρ) for χ ∈ G∨
k .

Lemma 3.6 ([5, Lemma 3.16]). Suppose that we have θ(2) ∈ Θ(2) and θ(3) ∈
Θ(3). Then there is θP ∈ Θ satisfying

(3.7) (ϕk)⋆(θP ) ≡ θ(k) for all k.

3.3. Proof of the main theorem

Through this section, we prove the following theorem. Recall we set a1 = 1,
a2 = a, a3 = b.

Theorem 3.8 (Main Theorem). Let G ⊂ GL3(C) be the finite group of type
1
r (1, a, b) with r = abc+a+b, where a, b, c are positive integers and b is coprime
to a. Then the birational component Yθ of θ-stable G-constellations is smooth
for a suitable parameter θ.

For the smooth model Y → X constructed in Section 3.1 above, recall we
have

φ2 : Y2 → U2 = C3/G2, φ3 : Y3 → U3 = C3/G3

which are the economic resolutions of U2 and U3, respectively.
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By [4, Theorem 4.19], the economic resolution of a terminal 3-fold quotient
singularity C3/G′ is isomorphic to the birational components of stable G′-
constellations. This means for k ∈ {2, 3}, we have aGk-bricksetSk for Yk → Uk

such that Γ ∈ Sk is θ(k)-stable.
Combining this with Theorem 3.3, we have a G-brickset

(3.9) S :=
⋃
k

{
ϕ⋆k(Γ

′)
∣∣Γ′ ∈ Sk

}
for the morphism Y → X. Thus by Lemma 2.9, it is enough to find generic
θ ∈ Θ such that every Γ ∈ S is θ-stable.

Lemma 3.10. For a G-brick Γ in S, let A ⊂ Γ be a C-basis of a submodule G
of C(Γ). Assume that

A ̸= ϕ−1
k

(
ϕk(A)

)
:=

{
m ∈M

∣∣ϕk(m) ∈ ϕk(A)
}
.

(i) If mρ is in ϕ−1
k

(
ϕk(A)

)
\A, then 0 ≤ wt(ρ) < r − ak.

(ii) There is a monomial mρ of weight ρ in ϕ−1
k

(
ϕk(A)

)
\ A with 0 ≤

wt(ρ) < ak.

Proof. For (i), assume that mρ is in ϕ−1
k

(
ϕk(A)

)
\ A. From the definition

of ϕk, we have ϕk(x
l
k · mρ) = ϕk(mρ) for l > 0. This is equivalent to that

0 ≤ wt(ρ) < r − akl.

For (ii), assume that m is in ϕ−1
k

(
ϕk(A)

)
\ A. Choose l := ⌊wt(m)

ak
⌋ and set

mρ to be the monomial with m = xlk · mρ. Then we have ϕk(mρ) = ϕk(m)
with wt(mρ) < ak. □

Lemma 3.11. Let ψ ∈ Θ be the GIT parameter defined by

(3.12) ψ(ρ) =


−1 if 0 ≤ wt(ρ) < b,

1 if r − b ≤ wt(ρ) < r,

0 otherwise.

Then ψ satisfies the following:

(i) For every ρ with 0 ≤ wt(ρ) < b, we have ψ(ρ) < 0.
(ii) For each k and for every χ ∈ G∨

k , we have∑
ϕk(ρ)=χ

ψ(ρ) = 0.

Proof. From the definition of ψ, (i) follows. We prove (ii) for the case k = 2.
First note that ϕ2(ρ) = χ if and only if wt(ρ) ≡ wt(χ) (mod a). Since r =
abc+a+b, we have i and i+(r−b) are equivalent modulo a. Thus for 0 ≤ i < b,
we get ϕ2(ρi) = ϕ2(ρi+r−b) and ψ(ρi) + ψ(ρi+r−b) = 0. This proves (ii). □

Remark 3.13. Here, (ii) means that for any monomial m we have∑
ϕk(ρ)=ϕk(m)

ψ(ρ) = 0.
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Theorem 3.14. Fix θP ∈ Θ satisfying (3.7). For a sufficiently large m, set

θ := θP +mψ.

Then every G-brick Γ ∈ S defined by (3.9) is θ-stable.

Proof. Let σ be the corresponding cone to the G-brick Γ. Then σ is contained
in one of the cones σ1, σ2, σ3.

Suppose that σ ⊂ σ1. This means that σ = σ1 and

Γ = {1, x1, x21, . . . , xr−2
1 , xr−1

1 }.
Any nonzero proper submodule of C(Γ) has a C-basis of the form

A = {xj1, x
j+1
1 , . . . , xr−2

1 , xr−1
1 }

for 1 ≤ j < r. Since ψ(A) > 0, Γ is θ-stable for m≫ 0.
Let us assume that σ ⊂ σk. Then we have the corresponding Gk-brick Γ′

to Γ, i.e., Γ = ϕ⋆k(Γ
′) = {m ∈ M

∣∣ϕk(m) ∈ Γ′}. Let G be a nonzero proper
submodule G of C(Γ). We need to show that θ(G) > 0. Let A ⊊ Γ be a C-basis
of G. We have the following two cases:

(1): A ⫋ ϕ−1
k

(
ϕk(A)

)
or (2): A = ϕ−1

k

(
ϕk(A)

)
.

In case (1), by Remark 3.13 and Lemma 3.10, we have∑
ρ∈ϕ−1

k (ϕk(A))

ψ(ρ) = 0, and
∑

ρ∈ϕ−1
k (ϕk(A))\A

ψ(ρ) < 0.

Therefore ψ(G) > 0 and θ(G) > 0 for sufficiently large m.
In case (2), by (ii) of Lemma 3.11, we have ψ(G) = 0. Note that ϕk(A)

defines a nonzero proper submodule G′ of C(Γ′). Since C(Γ′) is θ(k)-stable, we
have θ(k)(G′) > 0. From (3.7), we have θ(G) = θ(k)(G′) > 0. □

Corollary 3.15. With the notation above, the birational component Yθ is iso-
morphic to Y defined in Section 3.1.

This completes the proof of Theorem 3.8.
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