RESOLUTION OF QUOTIENT SINGULARITIES VIA G-CONSTELLATIONS

Seung-Jo Jung

Abstract

For a finite subgroup G of $\mathrm{GL}_{n}(\mathbb{C})$, the moduli space \mathcal{M}_{θ} of θ-stable G-constellations is rarely smooth. This note shows that for a group G of type $\frac{1}{r}(1, a, b)$ with $r=a b c+a+b$, there is a generic stability parameter $\theta \in \Theta$ such that the birational component Y_{θ} of θ stable G-constellations provides a resolution of the quotient singularity $X:=\mathbb{C}^{3} / G$.

1. Introduction

For a finite subgroup G of $\mathrm{GL}_{n}(\mathbb{C})$, a G-equivariant sheaf \mathcal{F} on \mathbb{C}^{n} with $\mathrm{H}^{0}(\mathcal{F})$ isomorphic to the regular representation $\mathbb{C}[G]$ of G is called a G-constellation. The GIT parameter space for G-constellations is defined to be

$$
\Theta=\left\{\theta \in \operatorname{Hom}_{\mathbb{Z}}(R(G), \mathbb{Q}) \mid \theta(\mathbb{C}[G])=0\right\},
$$

where $R(G)$ is the representation space of G. For $\theta \in \Theta$, we say that:
(i) a G-constellation \mathcal{F} is θ-(semi) stable if $\theta(\mathcal{G}) \geq 0(\theta(\mathcal{G})>0)$ for every proper subsheaf \mathcal{G} of \mathcal{F}.
(ii) θ is generic if every θ-semistable G-constellation is θ-stable.

The moduli spaces of θ-stable G-constellations provide good birational models of the quotient variety \mathbb{C}^{n} / G. For example, for $G \subset \mathrm{SL}_{3}(\mathbb{C})$ and generic θ, the moduli space of θ-stable G-constellations is a crepant resolution of \mathbb{C}^{n} / G (see $[1,2,7,9]$). However, it is very rare for the moduli space of stable G constellations to be smooth.

This note proves that for some abelian groups in $\mathrm{GL}_{3}(\mathbb{C})$, there is a generic stability parameter $\theta \in \Theta$ such that Y_{θ} is a resolution of the quotient singularity $X:=\mathbb{C}^{3} / G$.
Theorem 1.1 (Main Theorem). Let $G \subset \mathrm{GL}_{3}(\mathbb{C})$ be the finite group of type $\frac{1}{r}(1, a, b)$ with $r=a b c+a+b$, where a, b, c are positive integers and b is coprime

Received April 7, 2023; Accepted July 24, 2023.
2020 Mathematics Subject Classification. 14B05, 14J17.
Key words and phrases. G-constellations, quotient singularities.
This work was partially supported by NRF grant (NRF-2021R1C1C1004097) of the Korean government.
to a. Then the birational component Y_{θ} of θ-stable G-constellations is smooth for a suitable parameter θ.

Acknowledgement. I would like to thank the referees for many valuable comments and corrections.

2. Moduli spaces of G-constellations and G-bricks

Through this section, we consider the group G of type $\frac{1}{r}(1, a, b)$, that is,

$$
G=\left\langle\operatorname{diag}\left(\epsilon, \epsilon^{a}, \epsilon^{b}\right) \mid \epsilon^{r}=1\right\rangle \subset \mathrm{GL}_{3}(\mathbb{C})
$$

As G is abelian, the set of irreducible representations of G can be identified with the character group $G^{\vee}:=\operatorname{Hom}\left(G, \mathbb{C}^{\times}\right)$of G. With this identification, we say that an irreducible representation ρ is of weight i if $\rho \operatorname{maps} \operatorname{diag}\left(\epsilon, \epsilon^{a}, \epsilon^{b}\right)$ to ϵ^{i}, where $0 \leq i<r$. In this case, we let $\operatorname{wt}(\rho)$ denote the weight of ρ and ρ_{i} the representation of weight i.

Set $\bar{L}=\mathbb{Z}^{3}$ and define the lattice

$$
L=\bar{L}+\mathbb{Z} \cdot \frac{1}{r}(1, a, b) .
$$

We may identify the dual lattices $\bar{M}=\operatorname{Hom}_{\mathbb{Z}}(\bar{L}, \mathbb{Z})$ and $M=\operatorname{Hom}_{\mathbb{Z}}(L, \mathbb{Z})$ with Laurent monomials and G-invariant Laurent monomials, respectively. There is a surjective homomorphism

$$
\mathrm{wt}: \bar{M} \longrightarrow G^{\vee}
$$

induced by the embedding of G into the torus $\left(\mathbb{C}^{\times}\right)^{3} \subset \mathrm{GL}_{3}(\mathbb{C})$.
Let $\bar{M}_{\geq 0}$ denote genuine monomials in \bar{M}, i.e.,

$$
\bar{M}_{\geq 0}=\left\{x_{1}^{m_{1}} x_{2}^{m_{2}} x_{3}^{m_{3}} \in \bar{M} \mid m_{i} \geq 0 \text { for all } i\right\} .
$$

For a subset A of Laurent monomials, let $\langle A\rangle$ denote the $\mathbb{C}\left[x_{1}, x_{2}, x_{3}\right]$-submodule of $\mathbb{C}\left[x_{1}^{ \pm}, x_{2}^{ \pm}, x_{3}^{ \pm}\right]$generated by A.

Let σ_{+}be the cone generated by $\left\{e_{1}, e_{2}, e_{3}\right\}$, where $\left\{e_{1}, e_{2}, e_{3}\right\}$ is the standard basis of $\bar{L}=\mathbb{Z}^{3}$. By toric geometry, the quotient variety $X=\mathbb{C}^{3} / G$ is isomorphic to $U_{\sigma_{+}}=\operatorname{Spec} \mathbb{C}\left[\sigma_{+}^{\vee} \cap M\right]$.

2.1. G-constellations

Definition 2.1. A G-constellation on \mathbb{C}^{3} is a G-equivariant coherent sheaf \mathcal{F} on \mathbb{C}^{3} with $\mathrm{H}^{0}(\mathcal{F})$ isomorphic to $\mathbb{C}[G]$ as a G-representation.

With the following GIT stability parameter space

$$
\Theta=\left\{\theta \in \operatorname{Hom}_{\mathbb{Z}}(R(G), \mathbb{Q}) \mid \theta(\mathbb{C}[G])=0\right\},
$$

we define the stability of G-constellations as follows.
Definition 2.2. For $\theta \in \Theta$ and a G-constellation \mathcal{F}, we say that:
(i) \mathcal{F} is θ-semistable if $\theta(\mathcal{G}) \geq 0$ for every nonzero proper subsheaf \mathcal{G} of \mathcal{F}.
(ii) \mathcal{F} is θ-stable if $\theta(\mathcal{G})>0$ for every nonzero proper subsheaf \mathcal{G} of \mathcal{F}.
(iii) $\theta \in \Theta$ is generic if every θ-semistable G-constellation is θ-stable.

Let θ be generic. By King's result in [6], there is a quasiprojective scheme \mathcal{M}_{θ} which is a fine moduli space of θ-stable G-constellations. Moreover by [3, Theorem 1.1], the moduli space \mathcal{M}_{θ} has a distinguished component Y_{θ} birational to \mathbb{C}^{3} / G and that there is a projective morphism $Y_{\theta} \rightarrow \mathbb{C}^{3} / G$ obtained by variation of GIT quotient.

Definition 2.3. The unique irreducible component Y_{θ} is called the birational component of the moduli space \mathcal{M}_{θ}.

2.2. G-bricks and the birational component Y_{θ}

To describe the affine local charts of the birational component Y_{θ}, we introduce the notion of G-bricks (see [4]).
Definition 2.4. A subset Γ of Laurent monomials is called a G-prebrick if:
(i) the monomial $\mathbf{1}$ is in Γ;
(ii) there exists a unique Laurent monomial $\mathbf{m}_{\rho} \in \Gamma$ of weight ρ for each weight $\rho \in G^{\vee}$.
(iii) if $\mathbf{p}^{\prime} \cdot \mathbf{p} \cdot \mathbf{m}_{\rho} \in \Gamma$ for $\mathbf{m}_{\rho} \in \Gamma$ and $\mathbf{p}, \mathbf{p}^{\prime} \in \bar{M}_{\geq 0}$, then $\mathbf{p} \cdot \mathbf{m}_{\rho} \in \Gamma$;
(iv) the set Γ is connected in the sense that for any element \mathbf{m}_{ρ}, there is a (fractional) path in Γ from \mathbf{m}_{ρ} to $\mathbf{1}$ whose steps consist of multiplying or dividing by one of x_{i}.
For $\mathbf{m} \in \bar{M}$, we define $\mathrm{wt}_{\Gamma}(\mathbf{m})$ to be the unique element \mathbf{m}_{ρ} in Γ of the same weight as \mathbf{m}.

For a G-prebrick $\Gamma=\left\{\mathbf{m}_{\rho}\right\}$, let $S(\Gamma)$ denote the subsemigroup of M generated by

$$
\frac{\mathbf{n} \cdot \mathbf{m}_{\rho}}{\mathrm{wt}_{\Gamma}\left(\mathbf{n} \cdot \mathbf{m}_{\rho}\right)}
$$

for all $\mathbf{n} \in \bar{M}_{\geq 0}, \mathbf{m}_{\rho} \in \Gamma$. It turns out that the semigroup $S(\Gamma)$ is finitely generated. Thus $S(\Gamma)$ defines a (not-necessarily-normal) affine toric variety $U(\Gamma):=\operatorname{Spec} \mathbb{C}[S(\Gamma)]$.
Definition 2.5. A G-prebrick Γ is called a G-brick if $U(\Gamma)$ contains a torus fixed point.

For a G-brick Γ, we define

$$
C(\Gamma):=\langle\Gamma\rangle /\langle B(\Gamma)\rangle,
$$

where $B(\Gamma):=\left\{x_{i} \cdot \mathbf{m}_{\rho} \mid \mathbf{m}_{\rho} \in \Gamma\right\} \backslash \Gamma$. The module $C(\Gamma)$ becomes a torus invariant G-constellation.

Remark 2.6. The G-brick Γ is a \mathbb{C}-basis of G-constellations over $U(\Gamma)$. Moreover, a submodule \mathcal{G} of $C(\Gamma)$ is determined by a subset $A \subset \Gamma$, which forms a \mathbb{C}-basis of \mathcal{G}. This makes it easy to determine whether $C(\Gamma)$ is θ-stable or not.

Definition 2.7. A G-brick Γ is said to be θ-stable if $C(\Gamma)$ is θ-stable.
Definition 2.8. Let G be a finite diagonal group $G \subset \mathrm{GL}_{3}(\mathbb{C})$. Assume that we have a proper birational morphism $Y \rightarrow X:=\mathbb{C}^{3} / G$ with a normal toric variety Y. Let $\Sigma_{\max }$ be the set of the 3 -dimensional cones in the fan of Y. A G-brickset for Y is a set \mathfrak{S} of G-bricks satisfying:
(i) there is a bijective map $\Sigma_{\max } \rightarrow \mathfrak{S}$ sending σ to Γ_{σ};
(ii) $S\left(\Gamma_{\sigma}\right)=\sigma^{\vee} \cap M$.

Lemma 2.9 ([5, Proposition 2.16]). Let Y be a normal toric variety with a proper birational morphism $Y \rightarrow X:=\mathbb{C}^{3} / G$. Assume that there exist:
(i) a G-brickset \mathfrak{S} for $Y \rightarrow X$, and
(ii) a generic stability parameter θ such that $\Gamma \in \mathfrak{S}$ is θ-stable.

Then Y is isomorphic to Y_{θ}.

3. Main result

In this section, we assume that G is the finite group of type $\frac{1}{r}(1, a, b)$ with $r=a b c+a+b$, where a, b, c are positive integers and b is coprime to a. We may assume that $a<b$. We apply the methods in [5] for this case to prove the main theorem. For the convenience, set $a_{1}=1, a_{2}=a, a_{3}=b$.

3.1. Star subdivisions at v and the resolution

Recall the lattice

$$
L=\mathbb{Z}^{3}+\mathbb{Z} \cdot \frac{1}{r}(1, a, b)
$$

and the cone $\sigma_{+}=\operatorname{Cone}\left(e_{1}, e_{2}, e_{3}\right)$. Let X_{v} be the corresponding to the star subdivision of σ_{+}at the lattice point $v=\frac{1}{r}(1, a, b)$, i.e., the fan of X_{v} consists of the following cones

$$
\sigma_{1}=\operatorname{Cone}\left(v, e_{2}, e_{3}\right), \quad \sigma_{2}=\operatorname{Cone}\left(e_{1}, v, e_{3}\right), \quad \sigma_{3}=\operatorname{Cone}\left(e_{1}, e_{2}, v\right)
$$

Let U_{k} denote the affine toric variety corresponding to σ_{k}.
Let L_{1}, L_{2} and L_{3} be the sublattices of L generated by $\left\{v, e_{2}, e_{3}\right\},\left\{e_{1}, v, e_{3}\right\}$ and by $\left\{e_{1}, e_{2}, v\right\}$, respectively. Let M_{k} denote the dual lattice of L_{k}. Note that M_{2} has the dual basis $\left\{\zeta_{1}, \zeta_{2}, \zeta_{3}\right\}$ and M_{3} has the dual basis $\left\{\eta_{1}, \eta_{2}, \eta_{3}\right\}$, where

$$
\begin{gathered}
\xi_{1}=x_{1} x_{2}^{-\frac{1}{a}}, \quad \xi_{2}=x_{2}^{\frac{r}{a}}, \quad \xi_{3}=x_{3} x_{2}^{-\frac{b}{a}} \\
\eta_{1}=x_{1} x_{3}^{-\frac{1}{b}}, \quad \eta_{2}=x_{2} x_{3}^{-\frac{a}{b}}, \quad \eta_{3}=x_{3}^{-\frac{r}{b}}
\end{gathered}
$$

Note that the lattice inclusion $L_{k} \hookrightarrow L$ induces a toric morphism

$$
\bar{\pi}_{k}: \operatorname{Spec} \mathbb{C}\left[\sigma_{k}^{\vee} \cap M_{k}\right] \rightarrow U_{k}:=\operatorname{Spec} \mathbb{C}\left[\sigma_{2}^{\vee} \cap M\right]
$$

with Spec $\mathbb{C}\left[\sigma_{k}^{\vee} \cap M_{k}\right] \cong \mathbb{C}^{3}$ and $U_{k} \cong \mathbb{C}^{3} / G_{k}$, where $G_{k}:=L / L_{k}$. Thus we have:
(i) U_{1} is smooth.

Figure 3.1. Star subdivision at v
(ii) U_{2} is \mathbb{C}^{3} / G_{2}, where G_{2} is of type $\frac{1}{a}(1,-b, b)$.
(iii) U_{3} is \mathbb{C}^{3} / G_{3}, where G_{3} is of type $\frac{1}{b}(1, a,-a)$.

Note that U_{2} and U_{3} are terminal 3-fold quotient singularities. Since X_{v} has only terminal singularities, X_{v} is the relative minimal model over $X=\mathbb{C}^{3} / G$.

Since each terminal 3 -fold quotient singularity has an economic resolution (see [8]), we have the following three resolutions of singularities:
(i) $\bar{\varphi}_{1}: Y_{1} \rightarrow U_{1}=\mathbb{C}^{3}$;
(ii) $\bar{\varphi}_{2}: Y_{2} \rightarrow U_{2}=\mathbb{C}^{3} / G_{2}$;
(iii) $\bar{\varphi}_{3}: Y_{3} \rightarrow U_{3}=\mathbb{C}^{3} / G_{3}$,
which induce a projective birational morphism $\varphi: Y \rightarrow X$ factoring through X_{v} fitting into the following commutative diagram:

In what follows, we find a moduli description of the resolution Y in terms of G-constellations.

3.2. Round down functions for star subdivisions

Definition 3.1 (Round down functions). The round down functions

$$
\phi_{2}: \bar{M} \rightarrow M_{2}, \quad \phi_{3}: \bar{M} \rightarrow M_{3}
$$

for the star subdivision at $\frac{1}{r}(1, a, b)$ are defined by

$$
\phi_{2}\left(x_{1}^{m_{1}} x_{2}^{m_{2}} x_{3}^{m_{3}}\right)=\xi_{1}^{m_{1}} \xi_{2}^{\left\lfloor\frac{1}{r}\left(m_{1}+a m_{2}+b m_{3}\right)\right\rfloor} \xi_{3}^{m_{3}}
$$

$$
\phi_{3}\left(x_{1}^{m_{1}} x_{2}^{m_{2}} x_{3}^{m_{3}}\right)=\eta_{1}^{m_{1}} \eta_{2}^{m_{2}} \eta_{3}^{\left\lfloor\frac{1}{r}\left(m_{1}+a m_{2}+b m_{3}\right)\right\rfloor}
$$

where $\left\rfloor\right.$ is the floor function. For a G_{k}-brick Γ^{\prime}, we define

$$
\phi_{k}^{\star}\left(\Gamma^{\prime}\right):=\left\{\mathbf{m} \in \bar{M} \mid \phi_{k}(\mathbf{m}) \in \Gamma^{\prime}\right\} .
$$

Proposition 3.2 ([4, Proposition 4.5]). For a G_{k}-brick Γ^{\prime}, the set $\Gamma:=\phi_{k}^{\star}\left(\Gamma^{\prime}\right)$ is a G-brick with $S(\Gamma)=S\left(\Gamma^{\prime}\right)$. For $\mathbf{m} \in \bar{M}$, we have

$$
\mathrm{wt}_{\Gamma^{\prime}}\left(\phi_{k}(\mathbf{m})\right)=\phi_{k}\left(\mathrm{wt}_{\Gamma}(\mathbf{m})\right) .
$$

The key theorem in [5] is the following.
Theorem 3.3 ([5, Theorem 3.12]). Assume that each $Y_{k} \rightarrow U_{k}$ has a $G_{k^{-}}$ brickset \mathfrak{S}_{k}. Define

$$
\mathfrak{S}:=\bigcup_{k}\left\{\phi_{k}^{\star}\left(\Gamma^{\prime}\right) \mid \Gamma^{\prime} \in \mathfrak{S}_{k}\right\} .
$$

Then \mathfrak{S} is a G-brickset for the morphism $Y \rightarrow X$.
For a monomial \mathbf{m} of weight $\rho \in G^{\vee}$, we define $\phi_{k}(\rho)$ is the weight of $\phi_{k}(\mathbf{m})$. This induces a well-defined surjective map

$$
\begin{equation*}
\phi_{k}: G^{\vee} \rightarrow G_{k}^{\vee}, \quad \mathrm{wt}(\mathbf{m}) \mapsto \operatorname{wt}\left(\phi_{k}(\mathbf{m})\right) . \tag{3.4}
\end{equation*}
$$

From this, we define the linear map

$$
\left(\phi_{k}\right)_{\star}: \Theta \rightarrow \Theta^{(k)}
$$

defined by

$$
\begin{equation*}
\left[\left(\phi_{k}\right)_{\star}(\theta)\right](\chi)=\sum_{\phi_{k}(\rho)=\chi} \theta(\rho) \text { for } \chi \in G_{k}^{\vee} \tag{3.5}
\end{equation*}
$$

Lemma 3.6 ([5, Lemma 3.16]). Suppose that we have $\theta^{(2)} \in \Theta^{(2)}$ and $\theta^{(3)} \in$ $\Theta^{(3)}$. Then there is $\theta_{P} \in \Theta$ satisfying

$$
\begin{equation*}
\left(\phi_{k}\right)_{\star}\left(\theta_{P}\right) \equiv \theta^{(k)} \quad \text { for all } k \tag{3.7}
\end{equation*}
$$

3.3. Proof of the main theorem

Through this section, we prove the following theorem. Recall we set $a_{1}=1$, $a_{2}=a, a_{3}=b$.

Theorem 3.8 (Main Theorem). Let $G \subset \mathrm{GL}_{3}(\mathbb{C})$ be the finite group of type $\frac{1}{r}(1, a, b)$ with $r=a b c+a+b$, where a, b, c are positive integers and b is coprime to a. Then the birational component Y_{θ} of θ-stable G-constellations is smooth for a suitable parameter θ.

For the smooth model $Y \rightarrow X$ constructed in Section 3.1 above, recall we have

$$
\bar{\varphi}_{2}: Y_{2} \rightarrow U_{2}=\mathbb{C}^{3} / G_{2}, \quad \bar{\varphi}_{3}: Y_{3} \rightarrow U_{3}=\mathbb{C}^{3} / G_{3}
$$

which are the economic resolutions of U_{2} and U_{3}, respectively.

By [4, Theorem 4.19], the economic resolution of a terminal 3-fold quotient singularity $\mathbb{C}^{3} / G^{\prime}$ is isomorphic to the birational components of stable G^{\prime} constellations. This means for $k \in\{2,3\}$, we have a G_{k}-brickset \mathfrak{S}_{k} for $Y_{k} \rightarrow U_{k}$ such that $\Gamma \in \mathfrak{S}_{k}$ is $\theta^{(k)}$-stable.

Combining this with Theorem 3.3, we have a G-brickset

$$
\begin{equation*}
\mathfrak{S}:=\bigcup_{k}\left\{\phi_{k}^{\star}\left(\Gamma^{\prime}\right) \mid \Gamma^{\prime} \in \mathfrak{S}_{k}\right\} \tag{3.9}
\end{equation*}
$$

for the morphism $Y \rightarrow X$. Thus by Lemma 2.9, it is enough to find generic $\theta \in \Theta$ such that every $\Gamma \in \mathfrak{S}$ is θ-stable.

Lemma 3.10. For a G-brick Γ in \mathfrak{S}, let $A \subset \Gamma$ be a \mathbb{C}-basis of a submodule \mathcal{G} of $C(\Gamma)$. Assume that

$$
A \neq \phi_{k}^{-1}\left(\phi_{k}(A)\right):=\left\{\mathbf{m} \in \bar{M} \mid \phi_{k}(\mathbf{m}) \in \phi_{k}(A)\right\} .
$$

(i) If \mathbf{m}_{ρ} is in $\phi_{k}^{-1}\left(\phi_{k}(A)\right) \backslash A$, then $0 \leq \operatorname{wt}(\rho)<r-a_{k}$.
(ii) There is a monomial \mathbf{m}_{ρ} of weight ρ in $\phi_{k}^{-1}\left(\phi_{k}(A)\right) \backslash A$ with $0 \leq$ $\mathrm{wt}(\rho)<a_{k}$.
Proof. For (i), assume that \mathbf{m}_{ρ} is in $\phi_{k}^{-1}\left(\phi_{k}(A)\right) \backslash A$. From the definition of ϕ_{k}, we have $\phi_{k}\left(x_{k}^{l} \cdot \mathbf{m}_{\rho}\right)=\phi_{k}\left(\mathbf{m}_{\rho}\right)$ for $l>0$. This is equivalent to that $0 \leq \operatorname{wt}(\rho)<r-a_{k} l$.

For (ii), assume that \mathbf{m} is in $\phi_{k}^{-1}\left(\phi_{k}(A)\right) \backslash A$. Choose $l:=\left\lfloor\frac{\mathrm{wt}(\mathbf{m})}{a_{k}}\right\rfloor$ and set \mathbf{m}_{ρ} to be the monomial with $\mathbf{m}=x_{k}^{l} \cdot \mathbf{m}_{\rho}$. Then we have $\phi_{k}\left(\mathbf{m}_{\rho}\right)=\phi_{k}(\mathbf{m})$ with $\operatorname{wt}\left(\mathbf{m}_{\rho}\right)<a_{k}$.

Lemma 3.11. Let $\psi \in \Theta$ be the GIT parameter defined by

$$
\psi(\rho)= \begin{cases}-1 & \text { if } 0 \leq \operatorname{wt}(\rho)<b \tag{3.12}\\ 1 & \text { if } r-b \leq \operatorname{wt}(\rho)<r \\ 0 & \text { otherwise }\end{cases}
$$

Then ψ satisfies the following:
(i) For every ρ with $0 \leq \operatorname{wt}(\rho)<b$, we have $\psi(\rho)<0$.
(ii) For each k and for every $\chi \in G_{k}^{\vee}$, we have

$$
\sum_{\phi_{k}(\rho)=\chi} \psi(\rho)=0
$$

Proof. From the definition of ψ, (i) follows. We prove (ii) for the case $k=2$. First note that $\phi_{2}(\rho)=\chi$ if and only if $\operatorname{wt}(\rho) \equiv \operatorname{wt}(\chi)(\bmod a)$. Since $r=$ $a b c+a+b$, we have i and $i+(r-b)$ are equivalent modulo a. Thus for $0 \leq i<b$, we get $\phi_{2}\left(\rho_{i}\right)=\phi_{2}\left(\rho_{i+r-b}\right)$ and $\psi\left(\rho_{i}\right)+\psi\left(\rho_{i+r-b}\right)=0$. This proves (ii).
Remark 3.13. Here, (ii) means that for any monomial \mathbf{m} we have

$$
\sum_{\phi_{k}(\rho)=\phi_{k}(\mathbf{m})} \psi(\rho)=0 .
$$

Theorem 3.14. Fix $\theta_{P} \in \Theta$ satisfying (3.7). For a sufficiently large m, set

$$
\theta:=\theta_{P}+m \psi .
$$

Then every G-brick $\Gamma \in \mathfrak{S}$ defined by (3.9) is θ-stable.
Proof. Let σ be the corresponding cone to the G-brick Γ. Then σ is contained in one of the cones $\sigma_{1}, \sigma_{2}, \sigma_{3}$.

Suppose that $\sigma \subset \sigma_{1}$. This means that $\sigma=\sigma_{1}$ and

$$
\Gamma=\left\{1, x_{1}, x_{1}^{2}, \ldots, x_{1}^{r-2}, x_{1}^{r-1}\right\}
$$

Any nonzero proper submodule of $C(\Gamma)$ has a \mathbb{C}-basis of the form

$$
A=\left\{x_{1}^{j}, x_{1}^{j+1}, \ldots, x_{1}^{r-2}, x_{1}^{r-1}\right\}
$$

for $1 \leq j<r$. Since $\psi(A)>0, \Gamma$ is θ-stable for $m \gg 0$.
Let us assume that $\sigma \subset \sigma_{k}$. Then we have the corresponding G_{k}-brick Γ^{\prime} to Γ, i.e., $\Gamma=\phi_{k}^{\star}\left(\Gamma^{\prime}\right)=\left\{\mathbf{m} \in \bar{M} \mid \phi_{k}(\mathbf{m}) \in \Gamma^{\prime}\right\}$. Let \mathcal{G} be a nonzero proper submodule \mathcal{G} of $C(\Gamma)$. We need to show that $\theta(\mathcal{G})>0$. Let $A \subsetneq \Gamma$ be a \mathbb{C}-basis of \mathcal{G}. We have the following two cases:

$$
(1): A \varsubsetneqq \phi_{k}^{-1}\left(\phi_{k}(A)\right) \quad \text { or } \quad(2): A=\phi_{k}^{-1}\left(\phi_{k}(A)\right) .
$$

In case (1), by Remark 3.13 and Lemma 3.10, we have

$$
\sum_{\rho \in \phi_{k}^{-1}\left(\phi_{k}(A)\right)} \psi(\rho)=0, \text { and } \sum_{\rho \in \phi_{k}^{-1}\left(\phi_{k}(A)\right) \backslash A} \psi(\rho)<0
$$

Therefore $\psi(\mathcal{G})>0$ and $\theta(\mathcal{G})>0$ for sufficiently large m.
In case (2), by (ii) of Lemma 3.11, we have $\psi(\mathcal{G})=0$. Note that $\phi_{k}(A)$ defines a nonzero proper submodule \mathcal{G}^{\prime} of $C\left(\Gamma^{\prime}\right)$. Since $C\left(\Gamma^{\prime}\right)$ is $\theta^{(k)}$-stable, we have $\theta^{(k)}\left(\mathcal{G}^{\prime}\right)>0$. From (3.7), we have $\theta(\mathcal{G})=\theta^{(k)}\left(\mathcal{G}^{\prime}\right)>0$.
Corollary 3.15. With the notation above, the birational component Y_{θ} is isomorphic to Y defined in Section 3.1.

This completes the proof of Theorem 3.8.

References

[1] T. Bridgeland, A. King, and M. Reid, The McKay correspondence as an equivalence of derived categories, J. Amer. Math. Soc. 14 (2001), no. 3, 535-554. https://doi.org/10. 1090/S0894-0347-01-00368-X
[2] A. Craw and A. Ishii, Flops of G-Hilb and equivalences of derived categories by variation of GIT quotient, Duke Math. J. 124 (2004), no. 2, 259-307. https://doi.org/10.1215/ S0012-7094-04-12422-4
[3] A. Craw, D. Maclagan, and R. R. Thomas, Moduli of McKay quiver representations. I. The coherent component, Proc. Lond. Math. Soc. (3) 95 (2007), no. 1, 179-198. https: //doi.org/10.1112/plms/pdm009
[4] S.-J. Jung, Terminal quotient singularities in dimension three via variation of GIT, J. Algebra 468 (2016), 354-394. https://doi.org/10.1016/j.jalgebra.2016.08.032
[5] S.-J. Jung, On the Craw-Ishii conjecture, J. Pure Appl. Algebra 222 (2018), no. 7, 15791605. https://doi.org/10.1016/j.jpaa.2017.07.013
[6] A. D. King, Moduli of representations of finite-dimensional algebras, Quart. J. Math. Oxford Ser. (2) 45 (1994), no. 180, 515-530. https://doi.org/10.1093/qmath/45.4.515
[7] I. Nakamura, Hilbert schemes of abelian group orbits, J. Algebraic Geom. 10 (2001), no. 4, 757-779.
[8] M. Reid, Young person's guide to canonical singularities, in Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), 345-414, Proc. Sympos. Pure Math., 46, Part 1, Amer. Math. Soc., Providence, RI, 1987. https://doi.org/10.1090/pspum/046.1/927963
[9] R. Yamagishi, Moduli of G-constellations and crepant resolutions II: the Craw-Ishii conjecture, in preprint, arxiv:arXiv:2209.11901.

Seung-Jo Jung
Department of Mathematics Education, and
Institute of Pure and Applied Mathematics Jeonbuk National University
Jeonju 54896, Korea
Email address: seungjo@jbnu.ac.kr

