DOI QR코드

DOI QR Code

CURVATURE ESTIMATES FOR A CLASS OF FULLY NONLINEAR ELLIPTIC EQUATIONS WITH GENERAL RIGHT HAND SIDES

  • Jundong Zhou (School of Mathematics and Statistics Fuyang Normal University)
  • Received : 2023.03.01
  • Accepted : 2023.07.21
  • Published : 2024.03.31

Abstract

In this paper, we establish the curvature estimates for a class of curvature equations with general right hand sides depending on the gradient. We show an existence result by using the continuity method based on a priori estimates. We also derive interior curvature bounds for solutions of a class of curvature equations subject to affine Dirichlet data.

Keywords

Acknowledgement

This work was supported by the Natural Science Foundation of Anhui Province Education Department(KJ2021A0659, KJ2021A0661, 2022AH051320 and 2022AH051322), University Excellent Young Talents Research Project of Anhui Province (gxyq2022039), Scientific Research Foundation of Fuyang Normal University(2021KYQD0011).

References

  1. I. J. Bakelman and B. E. Kantor, Existence of a hypersurface homeomorphic to the sphere in Euclidean space with a given mean curvature, in Geometry and topology, No. 1 (Russian), 3-10, Leningrad. Gos. Ped. Inst., Leningrad, 1974.
  2. L. Caffarelli, L. Nirenberg, and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge-Ampere equation, Comm. Pure Appl. Math. 37 (1984), no. 3, 369-402. https://doi.org/10.1002/cpa.3160370306
  3. L. Caffarelli, L. Nirenberg, and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. III. Functions of the eigenvalues of the Hessian, Acta Math. 155 (1985), no. 3-4, 261-301. https://doi.org/10.1007/BF02392544
  4. L. Caffarelli, L. Nirenberg, and J. Spruck, Nonlinear second order elliptic equations. IV. Starshaped compact Weingarten hypersurfaces, in Current topics in partial differential equations, 1-26, Kinokuniya, Tokyo, 1986.
  5. C. Chen, W. Dong, and F. Han, Interior Hessian estimates for a class of Hessian type equations, Calc. Var. Partial Differential Equations 62 (2023), no. 2, Paper No. 52, 15 pp. https://doi.org/10.1007/s00526-022-02385-3
  6. X. Chen, Q. Tu, and N. Xiang, A class of Hessian quotient equations in Euclidean space, J. Differential Equations 269 (2020), no. 12, 11172-11194. https://doi.org/10.1016/j.jde.2020.08.048
  7. X. Chen, Q. Tu, and N. Xiang, A class of Hessian quotient equations in the warped product manifold, arXiv:2105.12047.
  8. L. Chen, Q. Tu, and N. Xiang, Pogorelov type estimates for a class of Hessian quotient equations, J. Differential Equations 282 (2021), 272-284. https://doi.org/10.1016/j.jde.2021.02.030
  9. J. Chu and H. Jiao, Curvature estimates for a class of Hessian type equations, Calc. Var. Partial Differential Equations 60 (2021), no. 3, Paper No. 90, 18 pp. https://doi.org/10.1007/s00526-021-01930-w
  10. W. Dong, Curvature estimates for p-convex hypersurfaces of prescribed curvature, Rev. Mat. Iberoam. 39 (2023), no. 3, 1039-1058. https://doi.org/10.4171/rmi/1348
  11. L. C. Evans, Classical solutions of fully nonlinear, convex, second-order elliptic equations, Comm. Pure Appl. Math. 35 (1982), no. 3, 333-363. https://doi.org/10.1002/cpa.3160350303
  12. P. Gauduchon, La 1-forme de torsion d'une variete hermitienne compacte, Math. Ann. 267 (1984), no. 4, 495-518. https://doi.org/10.1007/BF01455968
  13. C. Gerhardt, Closed Weingarten hypersurfaces in Riemannian manifolds, J. Differential Geom. 43 (1996), no. 3, 612-641. http://projecteuclid.org/euclid.jdg/1214458325
  14. B. Guan, The Dirichlet problem for Hessian equations on Riemannian manifolds, Calc. Var. Partial Differential Equations 8 (1999), no. 1, 45-69. https://doi.org/10.1007/s005260050116
  15. B. Guan, Second-order estimates and regularity for fully nonlinear elliptic equations on Riemannian manifolds, Duke Math. J. 163 (2014), no. 8, 1491-1524. https://doi.org/10.1215/00127094-2713591
  16. B. Guan and P. Guan, Convex hypersurfaces of prescribed curvatures, Ann. of Math. (2) 156 (2002), no. 2, 655-673. https://doi.org/10.2307/3597202
  17. P. Guan and Y. Li, C1,1 estimates for solutions of a problem of Alexandrov, Comm. Pure Appl. Math. 50 (1997), no. 8, 789-811. https://doi.org/10.1002/(SICI)1097-0312(199708)50:8<789::AID-CPA4>3.0.CO;2-2
  18. P. Guan, J. Li, and Y. Li, Hypersurfaces of prescribed curvature measure, Duke Math. J. 161 (2012), no. 10, 1927-1942. https://doi.org/10.1215/00127094-1645550
  19. P. Guan, C. Lin, and X.-N. Ma, The existence of convex body with prescribed curvature measures, Int. Math. Res. Not. IMRN 2009 (2009), no. 11, 1947-1975. https://doi.org/10.1093/imrn/rnp007
  20. P. Guan and G. Qiu, Interior C2 regularity of convex solutions to prescribing scalar curvature equations, Duke Math. J. 168 (2019), no. 9, 1641-1663. https://doi.org/10.1215/00127094-2019-0001
  21. P. Guan, C. Ren, and Z. Wang, Global C2-estimates for convex solutions of curvature equations, Comm. Pure Appl. Math. 68 (2015), no. 8, 1287-1325. https://doi.org/10.1002/cpa.21528
  22. N. M. Ivochkina, Solution of the Dirichlet problem for curvature equations of order m, Math. USSR-Sb. 67 (1990), no. 2, 317-339; translated from Mat. Sb. 180 (1989), no. 7, 867-887, 991. https://doi.org/10.1070/SM1990v067n02ABEH002089
  23. N. M. Ivochkina, The Dirichlet problem for the equations of curvature of order m, Leningrad Math. J. 2 (1991), no. 3, 631-654; translated from Algebra i Analiz 2 (1990), no. 3, 192-217.
  24. Y. Y. Li, Degree theory for second order nonlinear elliptic operators and its applications, Comm. Partial Differential Equations 14 (1989), no. 11, 1541-1578. https://doi.org/10.1080/03605308908820666
  25. V. I. Oliker, Hypersurfaces in ℝn+1 with prescribed Gaussian curvature and related equations of Monge-Ampere type, Comm. Partial Differential Equations 9 (1984), no. 8, 807-838. https://doi.org/10.1080/03605308408820348
  26. A. Pogorelov, The Minkowski multidimensional problem, translated from the Russian by Vladimir Oliker, Scripta Series in Mathematics, Winston, Washington, DC, 1978.
  27. G. H. Qiu, Interior curvature estimates for hypersurfaces of prescribing scalar curvature in dimension three, arXiv preprint arXiv:1901.07791, 2019.
  28. C. Ren and Z. Wang, On the curvature estimates for Hessian equations, Amer. J. Math. 141 (2019), no. 5, 1281-1315. https://doi.org/10.1353/ajm.2019.0033
  29. C. Ren and Z. Wang, The global curvature estimate for the n - 2 Hessian equation, preprint, arXiv:2002.08702.
  30. C. Ren and Z. Wang, Notes on the curvature estimates for Hessian equations, preprint, 10.48550/arXiv.2003.14234.
  31. W. Sheng, J. Urbas, and X.-J. Wang, Interior curvature bounds for a class of curvature equations, Duke Math. J. 123 (2004), no. 2, 235-264. https://doi.org/10.1215/S0012-7094-04-12321-8
  32. J. Spruck and L. Xiao, A note on star-shaped compact hypersurfaces with prescribed scalar curvature in space forms, Rev. Mat. Iberoam. 33 (2017), no. 2, 547-554. https://doi.org/10.4171/RMI/948
  33. G. Sz'ekelyhidi, V. Tosatti, and B. Weinkove, Gauduchon metrics with prescribed volume form, Acta Math. 219 (2017), no. 1, 181-211. https://doi.org/10.4310/ACTA.2017.v219.n1.a6
  34. A. E. Treibergs and S. W. Wei, Embedded hyperspheres with prescribed mean curvature, J. Differential Geom. 18 (1983), no. 3, 513-521. http://projecteuclid.org/euclid.jdg/1214437786
  35. J. Urbas, On the existence of nonclassical solutions for two classes of fully nonlinear elliptic equations, Indiana Univ. Math. J. 39 (1990), no. 2, 355-382. https://doi.org/10.1512/iumj.1990.39.39020
  36. J. Urbas, An interior curvature bound for hypersurfaces of prescribed k-th mean curvature, J. Reine Angew. Math. 519 (2000), 41-57. https://doi.org/10.1515/crll.2000.016
  37. J. D. Zhou, k-Hessian curvature type equations in space forms, Electron. J. Differential Equations 2022 (2022), Paper No. 18, 14 pp.