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ON THE GENERALIZED PRINCIPALLY INJECTIVE

MODULES

Fatemeh Gholami, Zohreh Habibi, and Alireza Najafizadeh

Abstract. Some results are generalized from principally injective rings

to principally injective modules. Moreover, it is proved that the results
are valid to some other extended injectivity conditions which may be

defined over modules. The influence of such injectivity conditions are
studied for both the trace and the reject submodules of some modules

over commutative rings. Finally, a correction is given to a paper related

to the subject.

1. Introduction

Throughout this paper all rings R are associative with unity and all modules
are unitary right modules unless otherwise stated. Moreover, the term homo-
morphism refers to an R-homomorphism. Recall that a ring R is called right
principally injective [13] (or right p-injective for short) if every homomorphism
from a principally right ideal of R to R can be extended to an endomorphism
of R. The concept of p-injective modules was introduced in 1974 to study von
Neumann regular rings, V-rings, self-injective rings and their generalizations
(see [19, 20]). This concept has been generalized to modules in various ways
(see [12, 15]). Following [12], a module M is called principally quasi-injective
(or PQ-injective for short) if each homomorphism from a principal submodule
of MR to MR can be extended to an endomorphism of MR. Given the right
R-modules M and N , we say that M is N -injective if every homomorphism
from a submodule of N to M can be extended to a homomorphism from N to
M . Moreover, we say thatM is principally N -injective if every homomorphism
from a cyclic submodule of N to M can be extended to a homomorphism of N
to M . An R-module M is called quasi-injective if it is M -injective. Over the
past decades, there have been several achievements in relation to N -injective
and principally N -injective modules specially in the case of p-injective rings
and PQ-injective modules; for instance see [2, 4, 7, 9, 13, 18–21] for the case of
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general rings and [3, 5, 6, 11] for commutative rings. Motivated by the results
of [9, 13], we give some results to the case of principally N -injective and PQ-
injective modules. Finally, some corrections to some of the results in [14] are
given.

2. Preliminaries and notations

If MR is a module, we write lM (r) = {m ∈ M : mr = 0} for all r ∈ R, and
rR(m) = {r ∈ R : mr = 0} for all m ∈ M . Moreover, the symbols Rad(MR)
and Z(MR) (or Zr(M)) stand for the radical and the singular submodule of
MR, respectively. The module M is called a singular module if Z(MR) = M .
Moreover, M is called a non-singular module if Z(MR) = 0. For a module M ,
the symbolsM (I) andM I denote the direct sum and direct product of |I| copies
of M , respectively, in which |I| is the cardinality of the index set I. Given the
R-modules M and N , the trace of M in N denoted by TrN (M) is defined as
TrN (M) =

∑
{Im(φ) | φ ∈ HomR(M,N)}. The reject of M in N denoted by

RejN (M) is defined as RejN (M) = ∩{ker(φ) | φ ∈ HomR(N,M)}. We say
thatM is (semi-)N -injective if every homomorphism f : K →M with K a (N -
cyclic) submodule of N can be extended to a homomorphism g : N →M . The
moduleM is called weakly N -injective if for every finitely generated submodule
K ⊂ N (N) all homomorphisms f : K → M can be extended to g : N (N) → M .
Let X be a class of R-modules. M is said to be (semi-,weakly-)X-injective if
M is (semi-,weakly-)N -injective for every N ∈ X. For X = {M} we obtain
the notions of (semi-,weakly-)self-injectivity. If X is the class of all (finitely
presented) modules over R, then the X-(weakly-)injective modules are called
(fp-)injective. The semi-R-injective modules are called p-injective. In a similar
way, we may define the notions as N -projective, principally N -projective, etc.
An R-module M is called a quasi-Frobenius module or a QF module if M is
weakly M -injective and a weak cogenerator in σ[M ]. A good reference about
the notions related to this subject is [17].

In Section 3, we give some results to principally N -injective and PQ-injective
modules. In Section 4, some results related to principally N -injective and PQ-
injective modules in the case that the ring under investigation is commutative
are given. In Section 5, some corrections to the results of Section 2 in [14] are
given.

3. Injectivity

In this section, we give some results about principally N -injective and PQ-
injective modules. We recall that an R-module M is said to be torsion if every
nonzero element is annihilated by a non zero-divisor in R.

Let MR be an R-module. We say that an element m ∈ M is faithful if
rR(m) = 0. An R-module M is called completely faithful if it contains a
faithful element.
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We observe that if R is a commutative domain, thenM is completely faithful
exactly if M is non-torsion.

Example 3.1. Every generator in the category of right R-modules is a com-
pletely faithful R-module. In particular, every unitary ring is completely faith-
ful as a right module over itself.

Example 3.2. If R is a domain, then RR is a completely faithful R-module
since every non-zero element of R is faithful.

Example 3.3. The Z-module M = Z2 ⊕ Z3 is not completely faithful since
for any arbitrary element m ∈M , we have rR(m) ̸= 0.

Proposition 3.4. Every right simple module over a right duo ring is completely
faithful.

Proof. Let M be a right simple module over a right duo ring R. Then, there
exists a maximal ideal I of R such that M ∼= R/I. Now the hypothesis that R
is a right duo ring implies that I is a two-sided ideal of R. Therefore, we can
consider R/I as a module over R/I. Consequently, R/I is a unitary ring. We
conclude the result. □

Proposition 3.5. Let MR be a faithful right module over a ring R with
S = End(MR). If M is finitely generated as S-module, then Mk

R is completely
faithful for some positive integer k.

Proof. Follows from [17, page 161]. In fact, the hypothesis that MR is faithful
and SM is finitely generated implies that Mk

R
∼= RR for some positive integer

k. We conclude the result. □

Lemma 3.6. Let M and N be right modules over a ring R. Then the following
statements are equivalent.

(1) MR is principally N -injective.
(2) lMrR(n) = HomR(N,M).n for all n ∈ N .

Proof. (1)⇒(2) Clearly, HomR(N,M).n ⊆ lMrR(n). Now, supposem∈ lMrR(n).
This implies that the map f : nR → M defined as f(nt) = mt is correctly de-
fined. Hence, the hypothesis gives a homomorphism g : N → M such that
g(n) = f(n). Consequently, m = f(n) = g(n) = g.n ∈ HomR(N,M).n.

(2)⇒(1) Let f : nR → M be a homomorphism for some n ∈ N . We
have f(n) ∈ lMrR(n) = HomR(N,M).n. Then, there exists a homomorphism
g : N →M such that f(n) = g(n), that is f extends to g. □

Lemma 3.7. LetM and N be right modules over a ring R. IfM is a submodule
of NR, then the following statements are equivalent.

(1) MR is principally N -injective.
(2) lMrR(n) = HomR(N,M).n for all n ∈ N .
(3) If rR(n1) ⊆ rR(n2) where n1, n2 ∈ N , then we have HomR(N,M).n2 ⊆

HomR(N,M).n1.
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(4) lM (bR ∩ rR(n)) = lM (b) + HomR(N,M).n for all b ∈ R and n ∈ N .

Proof. In view of Lemma 3.6, we need to prove the equivalences of (2) with (3)
and (4).

(2)⇒(3) We prove lMrR(n2) ⊆ lMrR(n1), where n1, n2 ∈ N . This is done
by some easy calculations.

(3)⇒(4) Let m = m1 +m2, where m1 ∈ lM (b) and m2 ∈ HomR(N,M).n.
Then m = m1 + f(n) for some homomorphism f : N → M and n ∈ N .
Now, if s = br ∈ bR ∩ rR(n), then m.s = (m1b)r + f(ns) = 0. Conversely,
suppose that m ∈ lM (bR ∩ rR(n)). Then, m.(bR ∩ rR(n)) = 0. Now an easy
calculation shows that rR(nb) ⊆ rR(mb). Hence, the hypothesis implies that
HomR(N,M).mb ⊆ HomR(N,M).nb. Now, in view of the fact that M ≤ NR

we get HomR(N,N)mb ⊆ HomR(N,M)mb ⊆ HomR(N,M)nb. Since 1N ∈
HomR(N,N), there exists a homomorphism α : N → M such that mb =
1N (mb) = α(nb) = α(n)b. Therefore, m − α(n) ∈ lM (b). Finally, we have
m = m− α(n) + α(n) ∈ lM (b) + HomR(N,M).n.

(4)⇒(2) Set b = 1. □

The equivalence of assertions (1), (2) and (3) in the following corollary fol-
lows from [12, Lemma 1.1].

Corollary 3.8. Given a module MR with S = End(MR), the following are
equivalent.

(1) MR is PQ-injective.
(2) lMrR(m) = Sm.
(3) If rR(m) ⊆ rR(n) where m,n ∈M , then Sn ⊆ Sm.
(4) lM (bR ∩ rR(m)) = lM (b) + Sm for all b ∈ R and m ∈M .

Proof. Set N =M in Lemma 3.7.
(3)⇒(4) Let n = m1 +m2, where m1 ∈ lM (b) and m2 ∈ Sm. Then m =

m1 + f(n) for some m ∈ M and f ∈ S. If s = br ∈ bR ∩ rR(m), then
ns = m1(br) + f(m) = (m1b)r + f(ms) = 0. Conversely, suppose that n ∈
lM (bR ∩ rR(m)). Then, n(bR ∩ rR(m)) = 0. Now an easy calculation shows
that rR(mb) ⊆ rR(nb). Consequently, there exists an f ∈ S such that nb =
f(mb) = f(m)b. This yields n− fm ∈ lM (b), hence n ∈ lM (b) + Sm.

(4)⇒(2) Set b = 1. □

Proposition 3.9. Let MR be a module over a ring R with S = End(MR).
Then the following statements are equivalent.

(1) If rR(m) ⊆ rR(n) where m,n ∈M , then Sn ⊆ Sm.
(2) Let N and K be submodules of MR and let f : N → K be a homomor-

phism. If y = f(x) for some x ∈ N and y ∈ K, then Sy ⊆ Sx.
(3) Let N and K be submodules of MR and let f : N → K be a homomor-

phism. If y = f(x) for some x ∈ N and y ∈ K, then there exists some
β :MR →MR such that y = β(x).
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Proof. (1)⇒(2) Let f : N → K be such that y = f(x) for some x ∈ N . This
implies that rR(x) ⊆ rR(f(x)). Now in view of the hypothesis we conclude the
result.

(2)⇒(1) Let m and n belong to MR such that rR(m) ⊆ rR(n). This implies
that the map f : mR → nR defined as f(mr) = nr is correctly defined.
Moreover, we have n = f(m). Now, the hypothesis implies that Sn ⊆ Sm.

(2)⇒(3) It is obvious. □

Proposition 3.10. Let {Ri}i∈I be a collection of rings. Suppose that {Mi}i∈I

and {Ni}i∈I be collections of modules such that Mi and Ni are Ri-modules
for every i ∈ I. Let R =

∏
i∈I Ri, M =

∏
i∈I Mi and N =

∏
i∈I Ni. Then,

M is principally N -injective as an R-module exactly if each Mi is principally
Ni-injective as Ri-module for all i ∈ I.

Proof. (⇒) It is clear.
(⇐) We show that M =

∏
i∈I Mi is principally (

∏
i∈I Ni)-injective. In view

of Lemma 3.7, we need to show that lM (rR(n)) = HomR(
∏

i∈I Mi,
∏

i∈I Ni)n
for all n = {ni}i∈I ∈ N . Suppose that m = {mi}i∈I ∈ lM (rR(n)), then
m.rR(n) = 0. Clearly, mi ∈ lMirRi(ni) for all i ∈ I. Now in view of the fact
that each Mi is principally Ni-injective as Ri-module, we have lMi

rRi
(ni) =

HomRi
(Mi, Ni)ni. Therefore, mi = αini for some αi ∈ HomRi

(Mi, Ni) and i ∈
I. Clearly, for α = {αi}i∈I we have m = {mi}i∈I = {αini}i∈I = α{ni}i∈I =
α(n), which yields the result. □

The next corollary generalizes Example 2 in [13] from p-injective rings to
the case of PQ-injective modules.

Corollary 3.11. Let {Ri}i∈I be a collection of rings and {Mi}i∈I be a collec-
tion of modules such that Mi is an Ri-module for all i ∈ I. Let R =

∏
i∈I Ri

and M =
∏

i∈I Mi. Then, M is PQ-injective as an R-module exactly if each
Mi is PQ-injective as Ri-module.

Proof. Set N =M in Proposition 3.10. □

Lemma 3.12. Let MR be a module over a ring R with S0 = End(MR) and
B = End(S0

M). Then, every element t of R may be viewed as an element of B
as t :S0

M →S0
M defined by (m)t = mt. Moreover, if S is a left denominator

set in S0, then t induces an element of End(S−1S0
S−1M).

Proof. It is straightforward. □

Lemma 3.13. Let MR be a module over a ring R with S0 = End(MR) and
B = End(S0

M). If S is a left denominator set in S0, then every left S−1S0-
module may be considered as S0-module.

Proof. It is straightforward. □

The next result generalizes Example 3 in [13]. A good reference for the
notions related to the rings and modules of quotients is [16].
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Proposition 3.14. Let MR be a PQ-injective module over a ring R with S0 =
End(MR). Let S ⊆ S0 be a left denominator set and T = End(S−1S0

S−1M).
Then S−1M is PQ-injective as a right T -module.

Proof. We consider S−1M as a left module over S−1S0. Let m ∈ M and
s ∈ S be arbitrary elements. In view of Corollary 3.8, we need to prove that
l(S−1M)rT (m/s) = B(m/s) in which B = End(S−1MT ). For this, suppose
that m0/s0 ∈ l(S−1M)rT (m/s). Then, (m0/s0)α = 0 for all α ∈ rT (m/s),
where rT (m/s) = {f ∈ T : (m/s).f = 0} = {f ∈ T : (m/s)f = 0}. Clearly,
m0 ∈ lMrR(m). Indeed, if r ∈ rR(m), then mr = 0. We shall prove that
m0r = 0. We define r̄ :S−1S0

S−1M −→S−1S0
S−1M as (n/s)r̄ = (nr/s).

Clearly, r ∈ End(S0S−1S−1M) = T . Now we have (m/s)r = mr/s = 0/s = 0.
This yields (m0/s0)r = 0 since (m0/s0)α = 0 for all α ∈ rT (m/s). Hence,
m0r/s0 = 0. Therefore, m0r/1 = (s0/1)(m0r/s0) = (s0/1).0 = 0. By Lemma
3.13, we have m0r = m0r/1 = 0. This means that, m0 ∈ lMrR(m) = S0m,
so we get an element β ∈ S0 such that m0 = βm. Consequently, m0/s0 =
βm/s0 = (β/s0)(m/1) = (sβ/s0)(m/s) ∈ B(m/s). In fact, since β, s ∈ S0 and
s0 ∈ S we get sβ/s0 ∈ S0. □

Following [14], a proper submodule of a right R-module M is called com-
pletely prime if for each r ∈ R and every m ∈ M such that mr ∈ P , we have
m ∈ P or Mr ⊆ P .

Proposition 3.15. Let MR and NR be modules over a ring R. Suppose that
NR is faithful and {0} is a completely prime submodule of NR. Then, MR is
principally N -injective exactly if HomR(N,M)n =M for all non zero n ∈ N .

Proof. (⇒) Let MR be principally N -injective and n be a non-zero element
of N . We prove that rR(n) = 0. To do this, suppose that r ∈ rR(n), then
nr = 0. Therefore, Nr = 0 since {0} is completely prime. Now in view of the
fact that N is faithful we get r = 0. We conclude that rR(n) = 0, which yields
lMrR(n) =M . Therefore, HomR(N,M)n =M . We are done by Lemma 3.6.

(⇐) Let n be a non-zero element of NR. We shall prove that lMrR(n) =
HomR(N,M)n. But in view of the hypothesis, we need to prove that lMrR(n) =
M . Let r ∈ rR(n) be arbitrary. Then, nr = 0. This implies that Nr = 0 since
{0} is completely prime. Therefore, r = 0 because N is faithful. We conclude
that rR(n) = 0, which means lMrR(n) =M . □

The next corollary generalizes the first part of Example 4 in [13].

Corollary 3.16. LetMR be a faithful module over a ring R with S=End(MR).
Suppose that {0} is a completely prime submodule of M . Then, MR is PQ-
injective exactly if SM is simple.

Proof. Set N =M in Proposition 3.15. □

Proposition 3.17. Let NR be a module over a commutative ring R and MR be
an R-submodule of NR. Suppose that {0} is a completely prime submodule of
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MR and each finitely generated submodule of M is cyclic. Then, for any non-
zero element m of M and any ideal I of R such that I ⊆ AnnR/I(M/mR), the
quotient module M/mR is principally N/mR-injective as an R/I-module.

Proof. LetM =M/mR, N = N/mR, R = R/I and S = EndR/I(M/mR) for a
non-zero element m ∈M and any ideal I of R such that I ⊆ AnnR/I(M/mR).

We prove that lMrR(n) = HomR(N,M)n, where n = n +mR is an arbitrary

element of N . For this suppose that y = y+mR ∈ lMrR(n) is arbitrary. Hence
(y+mR).rR(n) = 0. This implies that for any r ∈ R we have yr ∈ mR provided
that nr ∈ mR. On the other hand the hypothesis gives an element x ∈M such
that xR = mR + nR. So, there exist elements r1, r2 ∈ R such that m = xr1,
n = xr2. Hence, nr1 +mR = xr2r1 +mR = xr1r2 +mR = mr2 +mR = mR.
Therefore, nr1 ∈ mR which yields yr1 ∈ mR. So, there exists some t ∈ R such
that yr1 = mt. We have yr1 = xr1t = xtr1 hence, (y − xt)r1 = 0. Therefore,
y = xt since {0} is completely prime. Finally, an easy calculation shows that
HomR(N,M)x = HomR(N,M)n. We conclude the result by Lemma 3.6. □

The next corollary generalizes the second part of Example 4 in [13].

Corollary 3.18. LetMR be a module over a commutative ring R such that {0}
is a completely prime submodule of MR. Moreover, suppose that each finitely
generated submodule of M is cyclic. Then, for any non-zero element m of M
and any ideal I of R such that I ⊆ Ann(M/mR), the quotient module M/mR
is PQ-injective as an R/I-module.

Proof. Set N =M in Proposition 3.17. □

Now we give a generalization to Theorem 2.1 in [13].

Theorem 3.19. Let MR be a PQ-injective module with S = End(MR). If M
is completely faithful, then Z(MR) = Rad(SM).

Proof. First suppose that m ∈ Rad(SM) is an arbitrary element. Moreover,
suppose that I is a right ideal of R such that rR(m)∩I = 0. Now let b ∈ I be an
arbitrary element. Then, rR(m) ∩ bR = 0. This implies that Sm+ lM (b) =M
since M is PQ-injective. Now in view of the fact that Sm is a superfluous
submodule of M , we get lM (b) = M which yields mb = 0. Therefore, b ∈
rR(m) ∩ bR = 0. We conclude that I = 0, hence m ∈ Z(MR). Conversely, let
m ∈ Z(MR) be arbitrary. The hypothesis that M is completely faithful gives
an element, say n, such that rR(n) = 0. Hence, rR(n− αm) ∩ rR(αm) = 0 for
all α ∈ S. This implies that rR(n−α.m) = 0 since αm ∈ Z(MR). We conclude
that S(n− α.m) = M . By the way of contradiction, suppose that m does not
belong to Rad(SM), hence there exists a right maximal S-submodule N of M
such that m does not belong to N . Thus, Sm + N = M . This gives β ∈ S
and n1 ∈ N such that n = βm + n1. Consequently, Sn1 = S(n − β.m) which
means Sn1 =M , which is a contradiction. □
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Remark 3.20. Let N be a right R-module and M be a submodule of N . Let
S = End(MR), T = End(NR) and I = IM = HomR(N,M). We define the
maps φ : I → S and ψ : I → T as φ(α) = α |M and ψ(β) = β. Clearly, I is a
right ideal of T and ψ is a ring homomorphism. Moreover, both MR and NR

have structures as left I-modules.

Now we generalize Theorem 3.19 as follows. We note that HomR(NR,MR)m
is an I-submodule of IM .

Proposition 3.21. Let MR be a module over a ring R with S = End(MR).
Moreover, let NR be a submodule of MR such that MR is a principally N -
injective module. Let X be the set of all m ∈ M such that HomR(NR,MR).m
is a superfluous I-submodule of IM , where I = Hom(NR,MR). Then X ⊆
Z(MR). The equality holds provided that M is completely faithful.

Proof. Let m ∈ X and I be a right ideal of R such that rR(m) ∩ I = {0}.
Clearly, for any b ∈ I we have rR(m) ∩ bR = 0. Now by Lemma 3.7,
HomR(N,M).m + lM (b) = M . But HomR(N,M).m is a superfluous I-sub-
module of M , hence lM (b) = M . Since m ∈ M , mb = 0. Hence, b ∈
rR(m) ∩ bR = 0 which implies b = 0. Consequently, I = 0. This means
m ∈ Z(MR), hence X ⊆ Z(MR). Now suppose that M is completely faithful
and m ∈ Z(MR). We prove that m ∈ X. The hypothesis that M is completely
faithful, gives x ∈ M such that rR(x) = 0. Therefore, for all α : N → M we
have rR(x−αm)∩rR(αm) = 0. But αm ∈ Z(MR) which yields rR(x−αm) = 0.
Hence, lMrR(x − αm) = M . By Lemma 3.6 for all α : N → M we have
HomR(N,M)(x−αm) =M . By the way of contradiction, suppose thatm /∈ X.
Hence, HomR(N,M)m is not a superfluous I-submodule of IM . So, there exists
a proper I-submoduleM1 ofM such that HomR(N,M)m+M1 =M . We have
x ∈M , so there exist some β : N →M and m1 ∈M1 such that x = βm+m1.
Therefore, HomR(N,M)m1 = HomR(N,M)(x − βm) = M . Consequently,
HomR(N,M).m1 ⊆ I.M1 ⊆M1, so M ≤M1, which is a contradiction. □

At this point we turn our attention to [9]. The next result generalizes The-
orem 1.3 in [9] from p-injective rings to the case of PQ-injective modules. We
recall that a ring R is called von Neumann regular if every right principal ideal
of R is a direct summand of R.

Theorem 3.22. Let MR be a right non-singular and PQ-injective module over
a non-singular ring R. Assume that l(I ∩ J) = l(I) + l(J) for any non-zero
right ideals I and J of R. Then, every cyclic S-submodule of SM is a direct
summand of M .

Proof. The hypothesis that R is non-singular implies that rR(m) is not an
essential right ideal of R for any arbitrarym ∈M . This means that there exists
some non-zero right ideal L of R such that rR(m)∩L = 0. We can assume that
L is the complement of rR(m), which implies that rR(m) ⊕ L is an essential
right ideal of RR. On the other hand, if x is an element of lM (rR(m)+L), then
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x(rR(m)+L) = 0. But rR(m)+L is essential, hence x ∈ Zr(M) = 0. We have
lM (rR(m))∩ lM (L) ⊆ lM (rR(m) +L) = 0. Therefore, lM (rR(m))∩ lM (L) = 0.
In view of the hypothesis, we get lM (rR(m)) + lM (L) = lM (rR(m) ∩ L) =
lM (0) = M . Consequently, M = lM (rR(m)) + lM (L) = Sm ⊕ lM (L). We
conclude the result. □

Corollary 3.23. Let MR be a PQ-injective module over a non-singular ring
R such that Zr(M) is non-singular. Assume that l(I ∩ J) = l(I) + l(J) for all
non-zero right ideals I and J of R. Then, every cyclic S-submodule of SM is
a direct summand of SM . In particular, SM is PQ-injective as S-module.

Proof. We shall prove that MR is a non-singular module. In view of [8, Propo-
sition 3.29], we deduce that M/Zr(M) is a non-singular module. On the other
hand, Zr(M) is a non-singular submodule of M , hence MR is non-singular, see
[8, Proposition 3.28]. Now our assertion is clear by Theorem 3.22. □

We recall that a ring R is called semiprime if it has no nonzero nilpotent
right ideals. Following [9], a ring R is called ERT if every essential right ideal
of R is two-sided. Clearly, a right duo ring is an ERT ring. Moreover, by the
proof of Corollary 3.24, we observe that if R is semiprime and ERT, then R is
non-singular. Hence, Zr(R) is non-singular. Indeed, Corollary 3.23 generalizes
the following result.

Corollary 3.24. Let R be a semiprime ERT right p-injective ring. Assume
that l(I ∩ J) = l(I) + l(J) for any non-zero right ideals I and J of R. Then,
R is a von Neumann regular.

Proof. See [9, Corollary 1.4]. □

An R-module MR is called an essentially multiplication module if for every
essential submodule N of MR there exists an ideal I of R such that N =MI.
Clearly, every ring R is an essentially multiplication module. The next result
generalizes Proposition 1.8 in [9].

Theorem 3.25. Let MR be a completely faithful PQ-injective module over
a non-singular ring R such that Zr(M) is a non-singular submodule of M .
Assume that Soc(MR) = 0 and MR is essentially a multiplication module.
Then, M is a sub direct product of simple R-modules.

Proof. Let N be a maximal submodule ofMR. We prove that N is an essential
submodule of MR. By the way of contradiction, suppose that there exists a
non-zero submodule L of MR such that N ∩ L = 0. We can assume L to be
the complement of N , hence N ⊕ L is an essential submodule of MR. Since
L ̸= 0, N ⊕ L = MR. Moreover, we observe that L is a minimal submodule
of MR. In fact, if there exists a non-zero proper submodule K of L that is
minimal, then N ⊕K =M which means K is a complement of N in MR. This
implies that K is maximal among the submodules S such that N ∩ S = 0. We
get L ⊆ K, a contradiction. Hence L is minimal, which yields L is simple. We
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conclude that Soc(MR) ̸= 0, a desired contradiction. Next, we prove that any
essential submodule of MR is fully invariant. Given an essential submodule N
of MR, the hypothesis that MR is essentially a multiplication module implies
that there exists an ideal I of R such that N = MI. Now for α ∈ EndR(M)
we have α(N) = α(MI) = α(M)I ⊆ MI = N . We conclude that all maximal
submodules of MR are fully invariant. Therefore, by Theorem 3.19 we have
Rad(MR) = Z(MR) = 0, which means MR is a sub direct product of simple
R-modules. □

We recall that a right R-module M is a duo module if every submodule of
M is fully invariant.

Proposition 3.26. Let MR be a PQ-injective module with S = End(MR).
Then the following are equivalent.

(1) If r(m) ⊆ r(n) for some m and n in M , then nR ⊆ mR.
(2) MR is a duo module.

Proof. (1)⇒(2) Let N be a submodule of MR and α : MR → MR. Given
an element n ∈ N , we have r(n) ⊆ r(α(n)). The hypothesis implies that
α(n) ∈ nR ⊆ N .

(2)⇒(1) The hypothesis that r(m) ⊆ r(n), implies that the map α : mR →
nR defined as α(mr) = nr for all r ∈ R is correctly defined. Therefore, there
exists a homomorphism ᾱ :M →M such that ᾱi = jα, where i : mR→M and
j : nR → M are the inclusion maps, respectively. Hence, n = α(m) = ᾱ(m).
But mR is fully invariant, so ᾱ(m) ∈ mR which yields n ∈ mR. □

Recall from [10] that an R-moduleMR is called strongly duo if TrM (N) = N
for every submodule N of MR.

Proposition 3.27. Let MR be a duo module with S = End(MR). If K is
a direct summand of MR such that M is principally K-injective, then K is
strongly duo.

Proof. Let N be an arbitrary submodule of K. We prove that TrK(N) ⊆
N . Let φ : N → K be an arbitrary homomorphism. For all n ∈ N , we

have the exact sequence nR
i−→ N

φ−→ K
j−→ M , where i and j are the

inclusion homomorphisms. Since M is principally K-injective, there exists a
homomorphism φ̄ : K → M such that φ̄(n) = φ(n). Consequently, in view of
the hypothesis that M is a duo module we have φ(n) = φ̄(n) ∈ nR ≤ N . We
conclude the result. □

Corollary 3.28 ([10, Proposition 2.7]). Every PQ-injective duo module is
strongly duo.

Proof. Set K =M in Proposition 3.27. □
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4. Commutative rings

In this section we show that to what extent the injectivity conditions influ-
ence the reject and trace submodules of modules over commutative rings. The
first obvious result generalizes Example 1 in [13] from p-injective rings to the
case of PQ-injective modules.

Proposition 4.1. Any QF module over a commutative ring is PQ-injective.

Proof. It is straightforward. □

A proof for the next result which is duo to A. M. Aghdam and the third
author may be found in [1, Proposition 3.10]. It is given to the comparison
with the following results.

Proposition 4.2. Let M and N be modules over a commutative ring R such
that M is N -injective. If 0 → R→ N is exact, then TrM (N) =M .

Proof. The exact sequence 0 → R
f→ N implies the following exact sequence:

HomR(N,M)
f∗

→ HomR(R,M) → 0.

Letm ∈M be arbitrary. Then, there exists a homomorphism α ∈ HomR(R,M)
such that α(1) = m. The fact that f∗ is epic, implies that f∗(θ) = α for some
homomorphism θ ∈ HomR(N,M). Therefore, we have m = α(1) = f∗(θ(1)) =
θ(f(1)). Consequently, M ⊆ TrM (N). We conclude the result. □

Proposition 4.3. Let M,N and E be modules over a commutative ring R

such that E is injective. If 0 → N
g→M is exact and M = Im(g) +RejM (E),

then TrE(M) = TrE(N).

Proof. Let y = φ(n) be an arbitrary generator of TrE(N), where φ : N → E
and n ∈ N . Since E is injective, there exists an h :M → E such that hg = φ.
Therefore, y = φ(n) = hg(n) ∈ TrE(M). Conversely, suppose that y = φ(m)
be an arbitrary generator of TrE(M), where φ : M → E and m ∈ M . The
hypothesis implies thatm = g(n)+z for some n ∈ N and z ∈ RejM (E). Hence,
y = φ(m) = φ(g(n)) + φ(z). But φ(z) = 0 since z ∈ RejM (E). Therefore,
y = φg(n) ∈ TrE(N). □

Proposition 4.4. Let N and M be modules over a commutative ring R such
that AnnR(M) = AnnR(K) for all cyclic submodules K of N . If M is N -
injective, then TrM (N) =M .

Proof. Let m be an arbitrary element of M . Moreover, suppose that n is a
non-zero element of N . We define α : Rn → M as α(n) = m. The hypothesis
implies that Ann(Rn) = Ann(M) which yields α is well-defined. But M is
N -injective, hence there exists a homomorphism β ∈ HomR(N,M) such that
β(n) = α(n) = m. Consequently, m = β(n) ∈ Im(β) ⊆ TrM (N). □
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Theorem 4.5 ([17, Excercise 3, p. 116]). Let M,N and U be modules over a

commutative ring R. Let N
g→ M → 0 be an exact sequence of modules such

that ker(g) ⊆ RejN (U). Then, RejM (U) = gRejN (U).

Proof. Let x ∈ RejN (U) be arbitrary. We prove that g(x) ∈ RejM (U). For
this, suppose that φ : M → U is an arbitrary homomorphism. We prove
φg(x) = 0. Since φg : N → U and x ∈ RejN (U), we are done. Conversely,

suppose that x ∈ RejM (U). We shall prove x ∈ gRejN (U). The map N
g→M

is onto, hence there exists an element y ∈ N such that x = g(y). We prove
that y ∈ RejN (U). For this suppose that φ : N → U is arbitrary. Since
ker(g) ⊆ RejN (U), we get ker(g) ⊆ RejN (U) ⊆ ker(φ). Therefore, there exists
a homomorphism φ : N/ ker(g) → U such that φ(n) = φ(n) for all n ∈ N . On
the other hand, we have M ∼= N/ ker(g), hence we may consider φ : M → U .
Consequently, since x ∈ RejM (U) we conclude the result. □

Corollary 4.6. Let M and U be modules over a commutative ring R. Let

R
g→ M → 0 be an exact sequence of modules such that ker(g) ⊆ AnnR(U).

Then, Rej(M,U) = g(AnnR(U)).

Proof. Set N = R in Theorem 4.5. □

Theorem 4.7. Let M and N be modules over a commutative ring R and let

g : N → M be a homomorphism such that N
g→ M → 0 is exact. Let P be

an N -projective module such that ker(g) ∩ TrN (P ) = {0}. Then, RejP (M) =
RejP (N).

Proof. Let x ∈ RejP (N) be arbitrary. We prove that x ∈ RejP (M). To
do this, suppose that φ : P → M . The hypothesis that P is N -projective,
implies that there exists a homomorphism β : P → N such that φ = gβ. On
the other hand x ∈ RejP (N), hence β(x) = 0. This implies that φ(x) = 0.
Therefore, x ∈ RejP (M). Conversely, suppose that x ∈ RejP (M). We prove
that x ∈ RejP (N). To do this suppose that φ : P → N is arbitrary. Since

x ∈ RejP (M) and P
φ→ N

g→ M → 0, we get (gφ)(x) = 0. This implies that
φ(x) ∈ ker(g). On the other hand, we have φ(x) ∈ Im(φ) ⊆ TrN (P ). Hence,
φ(x) ∈ TrN (P ) ∩ ker(g). Consequently, φ(x) = 0. We conclude the result. □

5. A correction

Puninskĭı and Wisbauer [14] show that for any (non-Noetherian) left dis-
tributive or left duo ring there exists a 1-1 correspondence between indecom-
posable Σ-injective left R-modules and such completely prime ideals P of R,
for which the left classical localization R(P ) exists and is a left Noetherian ring.
Moreover, they clarify the structure of arbitrary Σ-injective left modules over
any left distributive or left duo ring. In particular, they completely describe
Σ-injective left modules over a left uniserial ring. In §2 of [14], the authors have
proved some general results which we state after this paragraph. According to
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the proofs given to the results, it is deduced that they are not true for general
cases. However, these inaccuracies have not violated the final results of the
paper in §3 and §4 since the special cases of the results of §2 have been used in
the arguments. In this section, we state the accurate form of the results. The
basic notions and definitions are found in [14].

Remark 5.1. Let M,N be R-modules and S = EndRM .

(1) If M is N -injective or M is weakly N -injective and N is finitely gener-
ated, then every finitely generated S-submodule of Hom(N,M) lies in
A(N,M).

(2) IfM is semi-N -injective, then every cyclic S-submodule of Hom(N,M)
lies in A(N,M).

Proof. See [14, Remark 2.2]. □

Corollary 5.2. Let M be an R-module and S = EndRM .

(1) If M is fp-injective, then every finitely generated S-submodule of M is
equal to ∩r⊥i for some ri ∈ R.

(2) If M is p-injective, then every cyclic S-submodule of M is equal to ∩r⊥i
for some ri ∈ R.

(3) If M is p-injective and t ∈ R, then S-submodule tM is equal to ∩r⊥i
for some ri ∈ R.

(4) If R is left p-injective, then (⊥r)⊥ = rR for every r ∈ R.

Proof. See [14, Corollary 2.3]. □

Lemma 5.3. Let M,N be R-modules and S = EndRM .

(1) If M is semi-N -injective and RN is distributive (uniserial), then the
right S-module Hom(N,M)S is distributive (uniserial).

(2) If Hom(N,M)S is distributive (uniserial) and RM cogenerates all fac-
tors of N at cyclic submodules, then N is distributive (uniserial) R-
module.

Proof. See [14, Lemma 2.7]. □

Corollary 5.4. Let M be an R-module and S = EndRM .

(1) If RM is p-injective and R is left distributive, then MS is distributive.
If in addition R or S is a local ring, then MS is uniserial.

(2) If MS is distributive and RM cogenerates all modules R/Rr, r ∈ R,
then R is a left distributive ring. If in addition MS is uniserial or one
of the rings S,R is local, then R is left uniserial.

Proof. See [14, Corollary 2.9]. □

Remark 5.5. The following corrections should be done in the above-mentioned
results as follows.

(1) In Remark 5.1(1), there should be “M is M -injective or M is weakly
M -injective and N is finitely generated.”



314 F. GHOLAMI, Z. HABIBI, AND A. NAJAFIZADEH

(2) In Remark 5.1(2), instead of “M is semi-N -injective” should be “M is
injective with respect to the diagrams” as in the proof of (2), and the
same in Lemma 5.3(1).

These changes leads to some changes in other results as follows.

Remark 5.6. The following corrections should be done.

(1) In Corollary 5.2(1), replace “M is fp-injective” with “M isM -injective
or M is weakly M -injective and finitely generated.”

(2) In Remark 5.2(2), change to “M is injective with respect to cyclic
submodules” and use the same wording in Corollary 5.4(1).
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