ON THE GENERALIZED PRINCIPALLY INJECTIVE MODULES

Fatemeh Gholami, Zohreh Habibi, and Alireza Najafizadeh

Abstract

Some results are generalized from principally injective rings to principally injective modules. Moreover, it is proved that the results are valid to some other extended injectivity conditions which may be defined over modules. The influence of such injectivity conditions are studied for both the trace and the reject submodules of some modules over commutative rings. Finally, a correction is given to a paper related to the subject.

1. Introduction

Throughout this paper all rings R are associative with unity and all modules are unitary right modules unless otherwise stated. Moreover, the term homomorphism refers to an R-homomorphism. Recall that a ring R is called right principally injective [13] (or right p-injective for short) if every homomorphism from a principally right ideal of R to R can be extended to an endomorphism of R. The concept of p-injective modules was introduced in 1974 to study von Neumann regular rings, V-rings, self-injective rings and their generalizations (see $[19,20]$). This concept has been generalized to modules in various ways (see $[12,15]$). Following [12], a module M is called principally quasi-injective (or PQ-injective for short) if each homomorphism from a principal submodule of M_{R} to M_{R} can be extended to an endomorphism of M_{R}. Given the right R-modules M and N, we say that M is N-injective if every homomorphism from a submodule of N to M can be extended to a homomorphism from N to M. Moreover, we say that M is principally N-injective if every homomorphism from a cyclic submodule of N to M can be extended to a homomorphism of N to M. An R-module M is called quasi-injective if it is M-injective. Over the past decades, there have been several achievements in relation to N-injective and principally N-injective modules specially in the case of p-injective rings and PQ-injective modules; for instance see $[2,4,7,9,13,18-21]$ for the case of

[^0]general rings and $[3,5,6,11]$ for commutative rings. Motivated by the results of $[9,13]$, we give some results to the case of principally N-injective and PQinjective modules. Finally, some corrections to some of the results in [14] are given.

2. Preliminaries and notations

If M_{R} is a module, we write $l_{M}(r)=\{m \in M: m r=0\}$ for all $r \in R$, and $r_{R}(m)=\{r \in R: m r=0\}$ for all $m \in M$. Moreover, the symbols $\operatorname{Rad}\left(M_{R}\right)$ and $Z\left(M_{R}\right)$ (or $\left.Z_{r}(M)\right)$ stand for the radical and the singular submodule of M_{R}, respectively. The module M is called a singular module if $Z\left(M_{R}\right)=M$. Moreover, M is called a non-singular module if $Z\left(M_{R}\right)=0$. For a module M, the symbols $M^{(I)}$ and M^{I} denote the direct sum and direct product of $|I|$ copies of M, respectively, in which $|I|$ is the cardinality of the index set I. Given the R-modules M and N, the trace of M in N denoted by $\operatorname{Tr}_{N}(M)$ is defined as $\operatorname{Tr}_{N}(M)=\sum\left\{\operatorname{Im}(\varphi) \mid \varphi \in \operatorname{Hom}_{R}(M, N)\right\}$. The reject of M in N denoted by $\operatorname{Rej}_{N}(M)$ is defined as $\operatorname{Rej}_{N}(M)=\cap\left\{\operatorname{ker}(\varphi) \mid \varphi \in \operatorname{Hom}_{R}(N, M)\right\}$. We say that M is (semi-) N-injective if every homomorphism $f: K \rightarrow M$ with K a (N cyclic) submodule of N can be extended to a homomorphism $g: N \rightarrow M$. The module M is called weakly N-injective if for every finitely generated submodule $K \subset N^{(\mathbb{N})}$ all homomorphisms $f: K \rightarrow M$ can be extended to $g: N^{(\mathbb{N})} \rightarrow M$. Let X be a class of R-modules. M is said to be (semi-, weakly-) X-injective if M is (semi-,weakly-) N-injective for every $N \in X$. For $X=\{M\}$ we obtain the notions of (semi-,weakly-)self-injectivity. If X is the class of all (finitely presented) modules over R, then the X-(weakly-)injective modules are called ($f p$-)injective. The semi- R-injective modules are called p-injective. In a similar way, we may define the notions as N-projective, principally N-projective, etc. An R-module M is called a quasi-Frobenius module or a QF module if M is weakly M-injective and a weak cogenerator in $\sigma[M]$. A good reference about the notions related to this subject is [17].

In Section 3, we give some results to principally N-injective and PQ-injective modules. In Section 4, some results related to principally N-injective and PQinjective modules in the case that the ring under investigation is commutative are given. In Section 5, some corrections to the results of Section 2 in [14] are given.

3. Injectivity

In this section, we give some results about principally N-injective and PQinjective modules. We recall that an R-module M is said to be torsion if every nonzero element is annihilated by a non zero-divisor in R.

Let M_{R} be an R-module. We say that an element $m \in M$ is faithful if $r_{R}(m)=0$. An R-module M is called completely faithful if it contains a faithful element.

We observe that if R is a commutative domain, then M is completely faithful exactly if M is non-torsion.

Example 3.1. Every generator in the category of right R-modules is a completely faithful R-module. In particular, every unitary ring is completely faithful as a right module over itself.

Example 3.2. If R is a domain, then R_{R} is a completely faithful R-module since every non-zero element of R is faithful.

Example 3.3. The \mathbb{Z}-module $M=\mathbb{Z}_{2} \oplus \mathbb{Z}_{3}$ is not completely faithful since for any arbitrary element $m \in M$, we have $r_{R}(m) \neq 0$.

Proposition 3.4. Every right simple module over a right duo ring is completely faithful.

Proof. Let M be a right simple module over a right duo ring R. Then, there exists a maximal ideal I of R such that $M \cong R / I$. Now the hypothesis that R is a right duo ring implies that I is a two-sided ideal of R. Therefore, we can consider R / I as a module over R / I. Consequently, R / I is a unitary ring. We conclude the result.

Proposition 3.5. Let M_{R} be a faithful right module over a ring R with $S=\operatorname{End}\left(M_{R}\right)$. If M is finitely generated as S-module, then M_{R}^{k} is completely faithful for some positive integer k.
Proof. Follows from [17, page 161]. In fact, the hypothesis that M_{R} is faithful and ${ }_{S} M$ is finitely generated implies that $M_{R}^{k} \cong R_{R}$ for some positive integer k. We conclude the result.

Lemma 3.6. Let M and N be right modules over a ring R. Then the following statements are equivalent.
(1) M_{R} is principally N-injective.
(2) $l_{M} r_{R}(n)=\operatorname{Hom}_{R}(N, M) . n$ for all $n \in N$.

Proof. (1) $\Rightarrow(2)$ Clearly, $\operatorname{Hom}_{R}(N, M) . n \subseteq l_{M} r_{R}(n)$. Now, suppose $m \in l_{M} r_{R}(n)$. This implies that the map $f: n R \rightarrow M$ defined as $f(n t)=m t$ is correctly defined. Hence, the hypothesis gives a homomorphism $g: N \rightarrow M$ such that $g(n)=f(n)$. Consequently, $m=f(n)=g(n)=g . n \in \operatorname{Hom}_{R}(N, M) . n$.
$(2) \Rightarrow(1)$ Let $f: n R \rightarrow M$ be a homomorphism for some $n \in N$. We have $f(n) \in l_{M} r_{R}(n)=\operatorname{Hom}_{R}(N, M) . n$. Then, there exists a homomorphism $g: N \rightarrow M$ such that $f(n)=g(n)$, that is f extends to g.

Lemma 3.7. Let M and N be right modules over a ring R. If M is a submodule of N_{R}, then the following statements are equivalent.
(1) M_{R} is principally N-injective.
(2) $l_{M} r_{R}(n)=\operatorname{Hom}_{R}(N, M) . n$ for all $n \in N$.
(3) If $r_{R}\left(n_{1}\right) \subseteq r_{R}\left(n_{2}\right)$ where $n_{1}, n_{2} \in N$, then we have $\operatorname{Hom}_{R}(N, M) . n_{2} \subseteq$ $\operatorname{Hom}_{R}(N, M) . n_{1}$.
(4) $l_{M}\left(b R \cap r_{R}(n)\right)=l_{M}(b)+\operatorname{Hom}_{R}(N, M) . n$ for all $b \in R$ and $n \in N$.

Proof. In view of Lemma 3.6, we need to prove the equivalences of (2) with (3) and (4).
$(2) \Rightarrow(3)$ We prove $l_{M} r_{R}\left(n_{2}\right) \subseteq l_{M} r_{R}\left(n_{1}\right)$, where $n_{1}, n_{2} \in N$. This is done by some easy calculations.
$(3) \Rightarrow(4)$ Let $m=m_{1}+m_{2}$, where $m_{1} \in l_{M}(b)$ and $m_{2} \in \operatorname{Hom}_{R}(N, M) . n$. Then $m=m_{1}+f(n)$ for some homomorphism $f: N \rightarrow M$ and $n \in N$. Now, if $s=b r \in b R \cap r_{R}(n)$, then $m . s=\left(m_{1} b\right) r+f(n s)=0$. Conversely, suppose that $m \in l_{M}\left(b R \cap r_{R}(n)\right)$. Then, $m .\left(b R \cap r_{R}(n)\right)=0$. Now an easy calculation shows that $r_{R}(n b) \subseteq r_{R}(m b)$. Hence, the hypothesis implies that $\operatorname{Hom}_{R}(N, M) . m b \subseteq \operatorname{Hom}_{R}(N, M) . n b$. Now, in view of the fact that $M \leq N_{R}$ we get $\operatorname{Hom}_{R}(N, N) m b \subseteq \operatorname{Hom}_{R}(N, M) m b \subseteq \operatorname{Hom}_{R}(N, M) n b$. Since $1_{N} \in$ $\operatorname{Hom}_{R}(N, N)$, there exists a homomorphism $\alpha: N \rightarrow M$ such that $m b=$ $1_{N}(m b)=\alpha(n b)=\alpha(n) b$. Therefore, $m-\alpha(n) \in l_{M}(b)$. Finally, we have $m=m-\alpha(n)+\alpha(n) \in l_{M}(b)+\operatorname{Hom}_{R}(N, M) . n$.
$(4) \Rightarrow(2)$ Set $b=1$.
The equivalence of assertions (1), (2) and (3) in the following corollary follows from [12, Lemma 1.1].

Corollary 3.8. Given a module M_{R} with $S=\operatorname{End}\left(M_{R}\right)$, the following are equivalent.
(1) M_{R} is $P Q$-injective.
(2) $l_{M} r_{R}(m)=S m$.
(3) If $r_{R}(m) \subseteq r_{R}(n)$ where $m, n \in M$, then $S n \subseteq S m$.
(4) $l_{M}\left(b R \cap r_{R}(m)\right)=l_{M}(b)+S m$ for all $b \in R$ and $m \in M$.

Proof. Set $N=M$ in Lemma 3.7.
$(3) \Rightarrow(4)$ Let $n=m_{1}+m_{2}$, where $m_{1} \in l_{M}(b)$ and $m_{2} \in S m$. Then $m=$ $m_{1}+f(n)$ for some $m \in M$ and $f \in S$. If $s=b r \in b R \cap r_{R}(m)$, then $n s=m_{1}(b r)+f(m)=\left(m_{1} b\right) r+f(m s)=0$. Conversely, suppose that $n \in$ $l_{M}\left(b R \cap r_{R}(m)\right)$. Then, $n\left(b R \cap r_{R}(m)\right)=0$. Now an easy calculation shows that $r_{R}(m b) \subseteq r_{R}(n b)$. Consequently, there exists an $f \in S$ such that $n b=$ $f(m b)=f(m) b$. This yields $n-f m \in l_{M}(b)$, hence $n \in l_{M}(b)+S m$.
$(4) \Rightarrow(2)$ Set $b=1$.
Proposition 3.9. Let M_{R} be a module over a ring R with $S=\operatorname{End}\left(M_{R}\right)$. Then the following statements are equivalent.
(1) If $r_{R}(m) \subseteq r_{R}(n)$ where $m, n \in M$, then $S n \subseteq S m$.
(2) Let N and K be submodules of M_{R} and let $f: N \rightarrow K$ be a homomorphism. If $y=f(x)$ for some $x \in N$ and $y \in K$, then $S y \subseteq S x$.
(3) Let N and K be submodules of M_{R} and let $f: N \rightarrow K$ be a homomorphism. If $y=f(x)$ for some $x \in N$ and $y \in K$, then there exists some $\beta: M_{R} \rightarrow M_{R}$ such that $y=\beta(x)$.

Proof. (1) $\Rightarrow(2)$ Let $f: N \rightarrow K$ be such that $y=f(x)$ for some $x \in N$. This implies that $r_{R}(x) \subseteq r_{R}(f(x))$. Now in view of the hypothesis we conclude the result.
$(2) \Rightarrow(1)$ Let m and n belong to M_{R} such that $r_{R}(m) \subseteq r_{R}(n)$. This implies that the map $f: m R \rightarrow n R$ defined as $f(m r)=n r$ is correctly defined. Moreover, we have $n=f(m)$. Now, the hypothesis implies that $S n \subseteq S m$.
$(2) \Rightarrow(3)$ It is obvious.
Proposition 3.10. Let $\left\{R_{i}\right\}_{i \in I}$ be a collection of rings. Suppose that $\left\{M_{i}\right\}_{i \in I}$ and $\left\{N_{i}\right\}_{i \in I}$ be collections of modules such that M_{i} and N_{i} are R_{i}-modules for every $i \in I$. Let $R=\prod_{i \in I} R_{i}, M=\prod_{i \in I} M_{i}$ and $N=\prod_{i \in I} N_{i}$. Then, M is principally N-injective as an R-module exactly if each M_{i} is principally N_{i}-injective as R_{i}-module for all $i \in I$.
Proof. (\Rightarrow) It is clear.
(\Leftarrow) We show that $M=\prod_{i \in I} M_{i}$ is principally $\left(\prod_{i \in I} N_{i}\right)$-injective. In view of Lemma 3.7, we need to show that $l_{M}\left(r_{R}(n)\right)=\operatorname{Hom}_{R}\left(\prod_{i \in I} M_{i}, \prod_{i \in I} N_{i}\right) n$ for all $n=\left\{n_{i}\right\}_{i \in I} \in N$. Suppose that $m=\left\{m_{i}\right\}_{i \in I} \in l_{M}\left(r_{R}(n)\right)$, then $m \cdot r_{R}(n)=0$. Clearly, $m_{i} \in l_{M_{i}} r_{R_{i}}\left(n_{i}\right)$ for all $i \in I$. Now in view of the fact that each M_{i} is principally N_{i}-injective as R_{i}-module, we have $l_{M_{i}} r_{R_{i}}\left(n_{i}\right)=$ $\operatorname{Hom}_{R_{i}}\left(M_{i}, N_{i}\right) n_{i}$. Therefore, $m_{i}=\alpha_{i} n_{i}$ for some $\alpha_{i} \in \operatorname{Hom}_{R_{i}}\left(M_{i}, N_{i}\right)$ and $i \in$ I. Clearly, for $\alpha=\left\{\alpha_{i}\right\}_{i \in I}$ we have $m=\left\{m_{i}\right\}_{i \in I}=\left\{\alpha_{i} n_{i}\right\}_{i \in I}=\alpha\left\{n_{i}\right\}_{i \in I}=$ $\alpha(n)$, which yields the result.

The next corollary generalizes Example 2 in [13] from p-injective rings to the case of PQ-injective modules.
Corollary 3.11. Let $\left\{R_{i}\right\}_{i \in I}$ be a collection of rings and $\left\{M_{i}\right\}_{i \in I}$ be a collection of modules such that M_{i} is an R_{i}-module for all $i \in I$. Let $R=\prod_{i \in I} R_{i}$ and $M=\prod_{i \in I} M_{i}$. Then, M is $P Q$-injective as an R-module exactly if each M_{i} is $P Q$-injective as R_{i}-module.

Proof. Set $N=M$ in Proposition 3.10.
Lemma 3.12. Let M_{R} be a module over a ring R with $S_{0}=\operatorname{End}\left(M_{R}\right)$ and $B=\operatorname{End}\left(S_{0} M\right)$. Then, every element t of R may be viewed as an element of B as $t: S_{S_{0}} M \rightarrow_{S_{0}} M$ defined by $(m) t=m t$. Moreover, if S is a left denominator set in S_{0}, then t induces an element of $\operatorname{End}\left(S^{-1} S_{0} S^{-1} M\right)$.
Proof. It is straightforward.
Lemma 3.13. Let M_{R} be a module over a ring R with $S_{0}=\operatorname{End}\left(M_{R}\right)$ and $B=\operatorname{End}\left(S_{0} M\right)$. If S is a left denominator set in S_{0}, then every left $S^{-1} S_{0}$ module may be considered as S_{0}-module.

Proof. It is straightforward.
The next result generalizes Example 3 in [13]. A good reference for the notions related to the rings and modules of quotients is [16].

Proposition 3.14. Let M_{R} be a $P Q$-injective module over a ring R with $S_{0}=$ $\operatorname{End}\left(M_{R}\right)$. Let $S \subseteq S_{0}$ be a left denominator set and $T=\operatorname{End}\left({ }_{S^{-1} S_{0}} S^{-1} M\right)$. Then $S^{-1} M$ is $P Q$-injective as a right T-module.
Proof. We consider $S^{-1} M$ as a left module over $S^{-1} S_{0}$. Let $m \in M$ and $s \in S$ be arbitrary elements. In view of Corollary 3.8, we need to prove that $l_{\left(S^{-1} M\right)} r_{T}(m / s)=B(m / s)$ in which $B=\operatorname{End}\left(S^{-1} M_{T}\right)$. For this, suppose that $m_{0} / s_{0} \in l_{\left(S^{-1} M\right)} r_{T}(m / s)$. Then, $\left(m_{0} / s_{0}\right) \alpha=0$ for all $\alpha \in r_{T}(m / s)$, where $r_{T}(m / s)=\{f \in T:(m / s) \cdot f=0\}=\{f \in T:(m / s) f=0\}$. Clearly, $m_{0} \in l_{M} r_{R}(m)$. Indeed, if $r \in r_{R}(m)$, then $m r=0$. We shall prove that $m_{0} r=0$. We define $\bar{r}:_{S^{-1} S_{0}} S^{-1} M \longrightarrow{ }_{S^{-1} S_{0}} S^{-1} M$ as $(n / s) \bar{r}=(n r / s)$. Clearly, $\bar{r} \in \operatorname{End}\left(S_{0} S^{-1} S^{-1} M\right)=T$. Now we have $(m / s) \bar{r}=m r / s=0 / s=0$. This yields $\left(m_{0} / s_{0}\right) r=0$ since $\left(m_{0} / s_{0}\right) \alpha=0$ for all $\alpha \in r_{T}(m / s)$. Hence, $m_{0} r / s_{0}=0$. Therefore, $m_{0} r / 1=\left(s_{0} / 1\right)\left(m_{0} r / s_{0}\right)=\left(s_{0} / 1\right) .0=0$. By Lemma 3.13, we have $m_{0} r=m_{0} r / 1=0$. This means that, $m_{0} \in l_{M} r_{R}(m)=S_{0} m$, so we get an element $\beta \in S_{0}$ such that $m_{0}=\beta m$. Consequently, $m_{0} / s_{0}=$ $\beta m / s_{0}=\left(\beta / s_{0}\right)(m / 1)=\left(s \beta / s_{0}\right)(m / s) \in B(m / s)$. In fact, since $\beta, s \in S_{0}$ and $s_{0} \in S$ we get $s \beta / s_{0} \in S_{0}$.

Following [14], a proper submodule of a right R-module M is called completely prime if for each $r \in R$ and every $m \in M$ such that $m r \in P$, we have $m \in P$ or $M r \subseteq P$.

Proposition 3.15. Let M_{R} and N_{R} be modules over a ring R. Suppose that N_{R} is faithful and $\{0\}$ is a completely prime submodule of N_{R}. Then, M_{R} is principally N-injective exactly if $\operatorname{Hom}_{R}(N, M) n=M$ for all non zero $n \in N$.

Proof. (\Rightarrow) Let M_{R} be principally N-injective and n be a non-zero element of N. We prove that $r_{R}(n)=0$. To do this, suppose that $r \in r_{R}(n)$, then $n r=0$. Therefore, $N r=0$ since $\{0\}$ is completely prime. Now in view of the fact that N is faithful we get $r=0$. We conclude that $r_{R}(n)=0$, which yields $l_{M} r_{R}(n)=M$. Therefore, $\operatorname{Hom}_{R}(N, M) n=M$. We are done by Lemma 3.6.
(\Leftarrow) Let n be a non-zero element of N_{R}. We shall prove that $l_{M} r_{R}(n)=$ $\operatorname{Hom}_{R}(N, M) n$. But in view of the hypothesis, we need to prove that $l_{M} r_{R}(n)=$ M. Let $r \in r_{R}(n)$ be arbitrary. Then, $n r=0$. This implies that $N r=0$ since $\{0\}$ is completely prime. Therefore, $r=0$ because N is faithful. We conclude that $r_{R}(n)=0$, which means $l_{M} r_{R}(n)=M$.

The next corollary generalizes the first part of Example 4 in [13].
Corollary 3.16. Let M_{R} be a faithful module over a ring R with $S=\operatorname{End}\left(M_{R}\right)$. Suppose that $\{0\}$ is a completely prime submodule of M. Then, M_{R} is $P Q$ injective exactly if ${ }_{S} M$ is simple.

Proof. Set $N=M$ in Proposition 3.15.
Proposition 3.17. Let N_{R} be a module over a commutative ring R and M_{R} be an R-submodule of N_{R}. Suppose that $\{0\}$ is a completely prime submodule of
M_{R} and each finitely generated submodule of M is cyclic. Then, for any nonzero element m of M and any ideal I of R such that $I \subseteq A n n_{R / I}(M / m R)$, the quotient module $M / m R$ is principally $N / m R$-injective as an R / I-module.

Proof. Let $\bar{M}=M / m R, \bar{N}=N / m R, \bar{R}=R / I$ and $\bar{S}=\operatorname{End}_{R / I}(M / m R)$ for a non-zero element $m \in M$ and any ideal I of R such that $I \subseteq A n n_{R / I}(M / m R)$. We prove that $l_{\bar{M}} r_{\bar{R}}(\bar{n})=\operatorname{Hom}_{\bar{R}}(\bar{N}, \bar{M}) \bar{n}$, where $\bar{n}=n+m R$ is an arbitrary element of \bar{N}. For this suppose that $\bar{y}=y+m R \in l_{\bar{M}} r_{\bar{R}}(\bar{n})$ is arbitrary. Hence $(y+m R) \cdot r_{\bar{R}}(\bar{n})=0$. This implies that for any $r \in R$ we have $y r \in m R$ provided that $n r \in m R$. On the other hand the hypothesis gives an element $x \in M$ such that $x R=m R+n R$. So, there exist elements $r_{1}, r_{2} \in R$ such that $m=x r_{1}$, $n=x r_{2}$. Hence, $n r_{1}+m R=x r_{2} r_{1}+m R=x r_{1} r_{2}+m R=m r_{2}+m R=m R$. Therefore, $n r_{1} \in m R$ which yields $y r_{1} \in m R$. So, there exists some $t \in R$ such that $y r_{1}=m t$. We have $y r_{1}=x r_{1} t=x t r_{1}$ hence, $(y-x t) r_{1}=0$. Therefore, $y=x t$ since $\{0\}$ is completely prime. Finally, an easy calculation shows that $\operatorname{Hom}_{\bar{R}}(\bar{N}, \bar{M}) \bar{x}=\operatorname{Hom}_{\bar{R}}(\bar{N}, \bar{M}) \bar{n}$. We conclude the result by Lemma 3.6.

The next corollary generalizes the second part of Example 4 in [13].
Corollary 3.18. Let M_{R} be a module over a commutative ring R such that $\{0\}$ is a completely prime submodule of M_{R}. Moreover, suppose that each finitely generated submodule of M is cyclic. Then, for any non-zero element m of M and any ideal I of R such that $I \subseteq \operatorname{Ann}(M / m R)$, the quotient module $M / m R$ is $P Q$-injective as an R / I-module.

Proof. Set $N=M$ in Proposition 3.17.
Now we give a generalization to Theorem 2.1 in [13].
Theorem 3.19. Let M_{R} be a $P Q$-injective module with $S=\operatorname{End}\left(M_{R}\right)$. If M is completely faithful, then $Z\left(M_{R}\right)=\operatorname{Rad}\left({ }_{S} M\right)$.

Proof. First suppose that $m \in \operatorname{Rad}\left({ }_{S} M\right)$ is an arbitrary element. Moreover, suppose that I is a right ideal of R such that $r_{R}(m) \cap I=0$. Now let $b \in I$ be an arbitrary element. Then, $r_{R}(m) \cap b R=0$. This implies that $S m+l_{M}(b)=M$ since M is PQ-injective. Now in view of the fact that $S m$ is a superfluous submodule of M, we get $l_{M}(b)=M$ which yields $m b=0$. Therefore, $b \in$ $r_{R}(m) \cap b R=0$. We conclude that $I=0$, hence $m \in Z\left(M_{R}\right)$. Conversely, let $m \in Z\left(M_{R}\right)$ be arbitrary. The hypothesis that M is completely faithful gives an element, say n, such that $r_{R}(n)=0$. Hence, $r_{R}(n-\alpha m) \cap r_{R}(\alpha m)=0$ for all $\alpha \in S$. This implies that $r_{R}(n-\alpha . m)=0$ since $\alpha m \in Z\left(M_{R}\right)$. We conclude that $S(n-\alpha . m)=M$. By the way of contradiction, suppose that m does not belong to $\operatorname{Rad}\left({ }_{S} M\right)$, hence there exists a right maximal S-submodule N of M such that m does not belong to N. Thus, $S m+N=M$. This gives $\beta \in S$ and $n_{1} \in N$ such that $n=\beta m+n_{1}$. Consequently, $S n_{1}=S(n-\beta . m)$ which means $S n_{1}=M$, which is a contradiction.

Remark 3.20. Let N be a right R-module and M be a submodule of N. Let $S=\operatorname{End}\left(M_{R}\right), T=\operatorname{End}\left(N_{R}\right)$ and $I=I^{M}=\operatorname{Hom}_{R}(N, M)$. We define the maps $\varphi: I \rightarrow S$ and $\psi: I \rightarrow T$ as $\varphi(\alpha)=\left.\alpha\right|_{M}$ and $\psi(\beta)=\beta$. Clearly, I is a right ideal of T and ψ is a ring homomorphism. Moreover, both M_{R} and N_{R} have structures as left I-modules.

Now we generalize Theorem 3.19 as follows. We note that $\operatorname{Hom}_{R}\left(N_{R}, M_{R}\right) m$ is an I-submodule of ${ }_{I} M$.

Proposition 3.21. Let M_{R} be a module over a ring R with $S=\operatorname{End}\left(M_{R}\right)$. Moreover, let N_{R} be a submodule of M_{R} such that M_{R} is a principally N injective module. Let X be the set of all $m \in M$ such that $\operatorname{Hom}_{R}\left(N_{R}, M_{R}\right) \cdot m$ is a superfluous I-submodule of ${ }_{I} M$, where $I=\operatorname{Hom}\left(N_{R}, M_{R}\right)$. Then $X \subseteq$ $Z\left(M_{R}\right)$. The equality holds provided that M is completely faithful.
Proof. Let $m \in X$ and I be a right ideal of R such that $r_{R}(m) \cap I=\{0\}$. Clearly, for any $b \in I$ we have $r_{R}(m) \cap b R=0$. Now by Lemma 3.7, $\operatorname{Hom}_{R}(N, M) \cdot m+l_{M}(b)=M$. But $\operatorname{Hom}_{R}(N, M) . m$ is a superfluous I-submodule of M, hence $l_{M}(b)=M$. Since $m \in M, m b=0$. Hence, $b \in$ $r_{R}(m) \cap b R=0$ which implies $b=0$. Consequently, $I=0$. This means $m \in Z\left(M_{R}\right)$, hence $X \subseteq Z\left(M_{R}\right)$. Now suppose that M is completely faithful and $m \in Z\left(M_{R}\right)$. We prove that $m \in X$. The hypothesis that M is completely faithful, gives $x \in M$ such that $r_{R}(x)=0$. Therefore, for all $\alpha: N \rightarrow M$ we have $r_{R}(x-\alpha m) \cap r_{R}(\alpha m)=0$. But $\alpha m \in Z\left(M_{R}\right)$ which yields $r_{R}(x-\alpha m)=0$. Hence, $l_{M} r_{R}(x-\alpha m)=M$. By Lemma 3.6 for all $\alpha: N \rightarrow M$ we have $\operatorname{Hom}_{R}(N, M)(x-\alpha m)=M$. By the way of contradiction, suppose that $m \notin X$. Hence, $\operatorname{Hom}_{R}(N, M) m$ is not a superfluous I-submodule of ${ }_{I} M$. So, there exists a proper I-submodule M_{1} of M such that $\operatorname{Hom}_{R}(N, M) m+M_{1}=M$. We have $x \in M$, so there exist some $\beta: N \rightarrow M$ and $m_{1} \in M_{1}$ such that $x=\beta m+m_{1}$. Therefore, $\operatorname{Hom}_{R}(N, M) m_{1}=\operatorname{Hom}_{R}(N, M)(x-\beta m)=M$. Consequently, $\operatorname{Hom}_{R}(N, M) . m_{1} \subseteq I . M_{1} \subseteq M_{1}$, so $M \leq M_{1}$, which is a contradiction.

At this point we turn our attention to [9]. The next result generalizes Theorem 1.3 in [9] from p-injective rings to the case of PQ -injective modules. We recall that a ring R is called von Neumann regular if every right principal ideal of R is a direct summand of R.

Theorem 3.22. Let M_{R} be a right non-singular and $P Q$-injective module over a non-singular ring R. Assume that $l(I \cap J)=l(I)+l(J)$ for any non-zero right ideals I and J of R. Then, every cyclic S-submodule of ${ }_{S} M$ is a direct summand of M.

Proof. The hypothesis that R is non-singular implies that $r_{R}(m)$ is not an essential right ideal of R for any arbitrary $m \in M$. This means that there exists some non-zero right ideal L of R such that $r_{R}(m) \cap L=0$. We can assume that L is the complement of $r_{R}(m)$, which implies that $r_{R}(m) \oplus L$ is an essential right ideal of R_{R}. On the other hand, if x is an element of $l_{M}\left(r_{R}(m)+L\right)$, then
$x\left(r_{R}(m)+L\right)=0$. But $r_{R}(m)+L$ is essential, hence $x \in Z_{r}(M)=0$. We have $l_{M}\left(r_{R}(m)\right) \cap l_{M}(L) \subseteq l_{M}\left(r_{R}(m)+L\right)=0$. Therefore, $l_{M}\left(r_{R}(m)\right) \cap l_{M}(L)=0$. In view of the hypothesis, we get $l_{M}\left(r_{R}(m)\right)+l_{M}(L)=l_{M}\left(r_{R}(m) \cap L\right)=$ $l_{M}(0)=M$. Consequently, $M=l_{M}\left(r_{R}(m)\right)+l_{M}(L)=S m \oplus l_{M}(L)$. We conclude the result.

Corollary 3.23. Let M_{R} be a $P Q$-injective module over a non-singular ring R such that $Z_{r}(M)$ is non-singular. Assume that $l(I \cap J)=l(I)+l(J)$ for all non-zero right ideals I and J of R. Then, every cyclic S-submodule of ${ }_{S} M$ is a direct summand of ${ }_{S} M$. In particular, ${ }_{S} M$ is $P Q$-injective as S-module.
Proof. We shall prove that M_{R} is a non-singular module. In view of [8, Proposition 3.29], we deduce that $M / Z_{r}(M)$ is a non-singular module. On the other hand, $Z_{r}(M)$ is a non-singular submodule of M, hence M_{R} is non-singular, see [8, Proposition 3.28]. Now our assertion is clear by Theorem 3.22.

We recall that a ring R is called semiprime if it has no nonzero nilpotent right ideals. Following [9], a ring R is called ERT if every essential right ideal of R is two-sided. Clearly, a right duo ring is an ERT ring. Moreover, by the proof of Corollary 3.24, we observe that if R is semiprime and ERT, then R is non-singular. Hence, $Z_{r}(R)$ is non-singular. Indeed, Corollary 3.23 generalizes the following result.

Corollary 3.24. Let R be a semiprime ERT right p-injective ring. Assume that $l(I \cap J)=l(I)+l(J)$ for any non-zero right ideals I and J of R. Then, R is a von Neumann regular.
Proof. See [9, Corollary 1.4].
An R-module M_{R} is called an essentially multiplication module if for every essential submodule N of M_{R} there exists an ideal I of R such that $N=M I$. Clearly, every ring R is an essentially multiplication module. The next result generalizes Proposition 1.8 in [9].
Theorem 3.25. Let M_{R} be a completely faithful $P Q$-injective module over a non-singular ring R such that $Z_{r}(M)$ is a non-singular submodule of M. Assume that $\operatorname{Soc}\left(M_{R}\right)=0$ and M_{R} is essentially a multiplication module. Then, M is a sub direct product of simple R-modules.
Proof. Let N be a maximal submodule of M_{R}. We prove that N is an essential submodule of M_{R}. By the way of contradiction, suppose that there exists a non-zero submodule L of M_{R} such that $N \cap L=0$. We can assume L to be the complement of N, hence $N \oplus L$ is an essential submodule of M_{R}. Since $L \neq 0, N \oplus L=M_{R}$. Moreover, we observe that L is a minimal submodule of M_{R}. In fact, if there exists a non-zero proper submodule K of L that is minimal, then $N \oplus K=M$ which means K is a complement of N in M_{R}. This implies that K is maximal among the submodules S such that $N \cap S=0$. We get $L \subseteq K$, a contradiction. Hence L is minimal, which yields L is simple. We
conclude that $\operatorname{Soc}\left(M_{R}\right) \neq 0$, a desired contradiction. Next, we prove that any essential submodule of M_{R} is fully invariant. Given an essential submodule N of M_{R}, the hypothesis that M_{R} is essentially a multiplication module implies that there exists an ideal I of R such that $N=M I$. Now for $\alpha \in \operatorname{End}_{R}(M)$ we have $\alpha(N)=\alpha(M I)=\alpha(M) I \subseteq M I=N$. We conclude that all maximal submodules of M_{R} are fully invariant. Therefore, by Theorem 3.19 we have $\operatorname{Rad}\left(M_{R}\right)=Z\left(M_{R}\right)=0$, which means M_{R} is a sub direct product of simple R-modules.

We recall that a right R-module M is a duo module if every submodule of M is fully invariant.

Proposition 3.26. Let M_{R} be a $P Q$-injective module with $S=\operatorname{End}\left(M_{R}\right)$. Then the following are equivalent.
(1) If $r(m) \subseteq r(n)$ for some m and n in M, then $n R \subseteq m R$.
(2) M_{R} is a duo module.

Proof. (1) $\Rightarrow(2)$ Let N be a submodule of M_{R} and $\alpha: M_{R} \rightarrow M_{R}$. Given an element $n \in N$, we have $r(n) \subseteq r(\alpha(n))$. The hypothesis implies that $\alpha(n) \in n R \subseteq N$.
$(2) \Rightarrow(1)$ The hypothesis that $r(m) \subseteq r(n)$, implies that the map $\alpha: m R \rightarrow$ $n R$ defined as $\alpha(m r)=n r$ for all $r \in R$ is correctly defined. Therefore, there exists a homomorphism $\bar{\alpha}: M \rightarrow M$ such that $\bar{\alpha} i=j \alpha$, where $i: m R \rightarrow M$ and $j: n R \rightarrow M$ are the inclusion maps, respectively. Hence, $n=\alpha(m)=\bar{\alpha}(m)$. But $m R$ is fully invariant, so $\bar{\alpha}(m) \in m R$ which yields $n \in m R$.

Recall from [10] that an R-module M_{R} is called strongly duo if $\operatorname{Tr}_{M}(N)=N$ for every submodule N of M_{R}.

Proposition 3.27. Let M_{R} be a duo module with $S=\operatorname{End}\left(M_{R}\right)$. If K is a direct summand of M_{R} such that M is principally K-injective, then K is strongly duo.

Proof. Let N be an arbitrary submodule of K. We prove that $\operatorname{Tr}_{K}(N) \subseteq$ N. Let $\varphi: N \rightarrow K$ be an arbitrary homomorphism. For all $n \in N$, we have the exact sequence $n R \xrightarrow{i} N \xrightarrow{\varphi} K \xrightarrow{j} M$, where i and j are the inclusion homomorphisms. Since M is principally K-injective, there exists a homomorphism $\bar{\varphi}: K \rightarrow M$ such that $\bar{\varphi}(n)=\varphi(n)$. Consequently, in view of the hypothesis that M is a duo module we have $\varphi(n)=\bar{\varphi}(n) \in n R \leq N$. We conclude the result.

Corollary 3.28 ([10, Proposition 2.7]). Every PQ-injective duo module is strongly duo.

Proof. Set $K=M$ in Proposition 3.27.

4. Commutative rings

In this section we show that to what extent the injectivity conditions influence the reject and trace submodules of modules over commutative rings. The first obvious result generalizes Example 1 in [13] from p-injective rings to the case of PQ-injective modules.

Proposition 4.1. Any $Q F$ module over a commutative ring is $P Q$-injective.
Proof. It is straightforward.
A proof for the next result which is duo to A. M. Aghdam and the third author may be found in [1, Proposition 3.10]. It is given to the comparison with the following results.

Proposition 4.2. Let M and N be modules over a commutative ring R such that M is N-injective. If $0 \rightarrow R \rightarrow N$ is exact, then $\operatorname{Tr}_{M}(N)=M$.

Proof. The exact sequence $0 \rightarrow R \xrightarrow{f} N$ implies the following exact sequence:

$$
\operatorname{Hom}_{R}(N, M) \xrightarrow{f^{*}} \operatorname{Hom}_{R}(R, M) \rightarrow 0 .
$$

Let $m \in M$ be arbitrary. Then, there exists a homomorphism $\alpha \in \operatorname{Hom}_{R}(R, M)$ such that $\alpha(1)=m$. The fact that f^{*} is epic, implies that $f^{*}(\theta)=\alpha$ for some homomorphism $\theta \in \operatorname{Hom}_{R}(N, M)$. Therefore, we have $m=\alpha(1)=f^{*}(\theta(1))=$ $\theta(f(1))$. Consequently, $M \subseteq \operatorname{Tr}_{M}(N)$. We conclude the result.

Proposition 4.3. Let M, N and E be modules over a commutative ring R such that E is injective. If $0 \rightarrow N \xrightarrow{g} M$ is exact and $M=\operatorname{Im}(g)+\operatorname{Rej} j_{M}(E)$, then $\operatorname{Tr}_{E}(M)=\operatorname{Tr}_{E}(N)$.

Proof. Let $y=\varphi(n)$ be an arbitrary generator of $\operatorname{Tr}_{E}(N)$, where $\varphi: N \rightarrow E$ and $n \in N$. Since E is injective, there exists an $h: M \rightarrow E$ such that $h g=\varphi$. Therefore, $y=\varphi(n)=h g(n) \in \operatorname{Tr}_{E}(M)$. Conversely, suppose that $y=\varphi(m)$ be an arbitrary generator of $\operatorname{Tr}_{E}(M)$, where $\varphi: M \rightarrow E$ and $m \in M$. The hypothesis implies that $m=g(n)+z$ for some $n \in N$ and $z \in \operatorname{Rej}_{M}(E)$. Hence, $y=\varphi(m)=\varphi(g(n))+\varphi(z)$. But $\varphi(z)=0$ since $z \in \operatorname{Rej} j_{M}(E)$. Therefore, $y=\varphi g(n) \in \operatorname{Tr}_{E}(N)$.

Proposition 4.4. Let N and M be modules over a commutative ring R such that $A n n_{R}(M)=A n n_{R}(K)$ for all cyclic submodules K of N. If M is N injective, then $\operatorname{Tr}_{M}(N)=M$.

Proof. Let m be an arbitrary element of M. Moreover, suppose that n is a non-zero element of N. We define $\alpha: R n \rightarrow M$ as $\alpha(n)=m$. The hypothesis implies that $\operatorname{Ann}(R n)=\operatorname{Ann}(M)$ which yields α is well-defined. But M is N-injective, hence there exists a homomorphism $\beta \in \operatorname{Hom}_{R}(N, M)$ such that $\beta(n)=\alpha(n)=m$. Consequently, $m=\beta(n) \in \operatorname{Im}(\beta) \subseteq \operatorname{Tr}_{M}(N)$.

Theorem 4.5 ([17, Excercise 3, p. 116]). Let M, N and U be modules over a commutative ring R. Let $N \xrightarrow{g} M \rightarrow 0$ be an exact sequence of modules such that $\operatorname{ker}(g) \subseteq \operatorname{Rej}_{N}(U)$. Then, $\operatorname{Rej}_{M}(U)=g \operatorname{Rej} j_{N}(U)$.
Proof. Let $x \in \operatorname{Re} j_{N}(U)$ be arbitrary. We prove that $g(x) \in \operatorname{Re} j_{M}(U)$. For this, suppose that $\varphi: M \rightarrow U$ is an arbitrary homomorphism. We prove $\varphi g(x)=0$. Since $\varphi g: N \rightarrow U$ and $x \in \operatorname{Rej} j_{N}(U)$, we are done. Conversely, suppose that $x \in \operatorname{Re} j_{M}(U)$. We shall prove $x \in g R e j_{N}(U)$. The map $N \xrightarrow{g} M$ is onto, hence there exists an element $y \in N$ such that $x=g(y)$. We prove that $y \in \operatorname{Rej} j_{N}(U)$. For this suppose that $\varphi: N \rightarrow U$ is arbitrary. Since $\operatorname{ker}(g) \subseteq \operatorname{Rej}_{N}(U)$, we get $\operatorname{ker}(g) \subseteq \operatorname{Re} j_{N}(U) \subseteq \operatorname{ker}(\varphi)$. Therefore, there exists a homomorphism $\bar{\varphi}: N / \operatorname{ker}(g) \rightarrow U$ such that $\bar{\varphi}(\bar{n})=\varphi(n)$ for all $n \in N$. On the other hand, we have $M \cong N / \operatorname{ker}(g)$, hence we may consider $\varphi: M \rightarrow U$. Consequently, since $x \in \operatorname{Rej} j_{M}(U)$ we conclude the result.

Corollary 4.6. Let M and U be modules over a commutative ring R. Let $R \xrightarrow{g} M \rightarrow 0$ be an exact sequence of modules such that $\operatorname{ker}(g) \subseteq A n n_{R}(U)$. Then, $\operatorname{Rej}(M, U)=g\left(A n n_{R}(U)\right)$.

Proof. Set $N=R$ in Theorem 4.5.
Theorem 4.7. Let M and N be modules over a commutative ring R and let $g: N \rightarrow M$ be a homomorphism such that $N \xrightarrow{g} M \rightarrow 0$ is exact. Let P be an N-projective module such that $\operatorname{ker}(g) \cap \operatorname{Tr}_{N}(P)=\{0\}$. Then, $\operatorname{Rej}_{P}(M)=$ $\operatorname{Rej}_{P}(N)$.

Proof. Let $x \in \operatorname{Rej} j_{P}(N)$ be arbitrary. We prove that $x \in \operatorname{Rej} j_{P}(M)$. To do this, suppose that $\varphi: P \rightarrow M$. The hypothesis that P is N-projective, implies that there exists a homomorphism $\beta: P \rightarrow N$ such that $\varphi=g \beta$. On the other hand $x \in \operatorname{Rej}(N)$, hence $\beta(x)=0$. This implies that $\varphi(x)=0$. Therefore, $x \in \operatorname{Rej} j_{P}(M)$. Conversely, suppose that $x \in \operatorname{Rej} j_{P}(M)$. We prove that $x \in \operatorname{Rej} j_{P}(N)$. To do this suppose that $\varphi: P \rightarrow N$ is arbitrary. Since $x \in \operatorname{Rej}_{P}(M)$ and $P \xrightarrow{\varphi} N \xrightarrow{g} M \rightarrow 0$, we get $(g \varphi)(x)=0$. This implies that $\varphi(x) \in \operatorname{ker}(g)$. On the other hand, we have $\varphi(x) \in \operatorname{Im}(\varphi) \subseteq \operatorname{Tr}_{N}(P)$. Hence, $\varphi(x) \in \operatorname{Tr}_{N}(P) \cap \operatorname{ker}(g)$. Consequently, $\varphi(x)=0$. We conclude the result.

5. A correction

Puninskiĭ and Wisbauer [14] show that for any (non-Noetherian) left distributive or left duo ring there exists a 1-1 correspondence between indecomposable Σ-injective left R-modules and such completely prime ideals P of R, for which the left classical localization $R_{(P)}$ exists and is a left Noetherian ring. Moreover, they clarify the structure of arbitrary Σ-injective left modules over any left distributive or left duo ring. In particular, they completely describe Σ-injective left modules over a left uniserial ring. In $\S 2$ of [14], the authors have proved some general results which we state after this paragraph. According to
the proofs given to the results, it is deduced that they are not true for general cases. However, these inaccuracies have not violated the final results of the paper in $\S 3$ and $\S 4$ since the special cases of the results of $\S 2$ have been used in the arguments. In this section, we state the accurate form of the results. The basic notions and definitions are found in [14].

Remark 5.1. Let M, N be R-modules and $S=\operatorname{End}_{R} M$.
(1) If M is N-injective or M is weakly N-injective and N is finitely generated, then every finitely generated S-submodule of $\operatorname{Hom}(N, M)$ lies in $\mathcal{A}(N, M)$.
(2) If M is semi- N-injective, then every cyclic S-submodule of $\operatorname{Hom}(N, M)$ lies in $\mathcal{A}(N, M)$.

Proof. See [14, Remark 2.2].
Corollary 5.2. Let M be an R-module and $S=\operatorname{End}_{R} M$.
(1) If M is fp-injective, then every finitely generated S-submodule of M is equal to $\cap r_{i}^{\perp}$ for some $r_{i} \in R$.
(2) If M is p-injective, then every cyclic S-submodule of M is equal to $\cap r_{i}^{\perp}$ for some $r_{i} \in R$.
(3) If M is p-injective and $t \in R$, then S-submodule $t M$ is equal to $\cap r_{i}^{\perp}$ for some $r_{i} \in R$.
(4) If R is left p-injective, then $\left({ }^{\perp} r\right)^{\perp}=r R$ for every $r \in R$.

Proof. See [14, Corollary 2.3].
Lemma 5.3. Let M, N be R-modules and $S=\operatorname{End}_{R} M$.
(1) If M is semi- N-injective and ${ }_{R} N$ is distributive (uniserial), then the right S-module $\operatorname{Hom}(N, M)_{S}$ is distributive (uniserial).
(2) If $\operatorname{Hom}(N, M)_{S}$ is distributive (uniserial) and ${ }_{R} M$ cogenerates all factors of N at cyclic submodules, then N is distributive (uniserial) R module.

Proof. See [14, Lemma 2.7].
Corollary 5.4. Let M be an R-module and $S=\operatorname{End}_{R} M$.
(1) If ${ }_{R} M$ is p-injective and R is left distributive, then M_{S} is distributive. If in addition R or S is a local ring, then M_{S} is uniserial.
(2) If M_{S} is distributive and ${ }_{R} M$ cogenerates all modules $R / R r, r \in R$, then R is a left distributive ring. If in addition M_{S} is uniserial or one of the rings S, R is local, then R is left uniserial.
Proof. See [14, Corollary 2.9].
Remark 5.5. The following corrections should be done in the above-mentioned results as follows.
(1) In Remark $5.1(1)$, there should be " M is M-injective or M is weakly M-injective and N is finitely generated."
(2) In Remark 5.1(2), instead of " M is semi- N-injective" should be " M is injective with respect to the diagrams" as in the proof of (2), and the same in Lemma 5.3(1).

These changes leads to some changes in other results as follows.
Remark 5.6. The following corrections should be done.
(1) In Corollary $5.2(1)$, replace " M is $f p$-injective" with " M is M-injective or M is weakly M-injective and finitely generated."
(2) In Remark 5.2(2), change to " M is injective with respect to cyclic submodules" and use the same wording in Corollary 5.4(1).

References

[1] A. M. Aghdam and A. Najafizadeh, Square submodule of a module, Mediterr. J. Math. 7 (2010), no. 2, 195-207. https://doi.org/10.1007/s00009-010-0041-4
[2] I. Amin, M. Yousif, and N. Zeyada, Soc-injective rings and modules, Comm. Algebra 33 (2005), no. 11, 4229-4250. https://doi.org/10.1080/00927870500279001
[3] H. Ansari-Toroghy, M-injectivity and asymptotic behaviour, Bull. Korean Math. Soc. 39 (2002), no. 2, 251-258. https://doi.org/10.4134/BKMS.2002.39.2.251
[4] S. Chotchaisthit, When is a quasi-p-injective module continuous?, Southeast Asian Bull. Math. 26 (2002), no. 3, 391-394. https://doi.org/10.1007/s10012-002-0391-3
[5] L. Fuchs and S. B. Lee, Weak-injectivity and almost perfect domains, J. Algebra 321 (2009), no. 1, 18-27. https://doi.org/10.1016/j.jalgebra.2008.08.033
[6] L. Fuchs and S. B. Lee, On weak-injective modules over integral domains, J. Algebra 323 (2010), no. 7, 1872-1878. https://doi.org/10.1016/j.jalgebra.2010.02.005
[7] Z. Gao and F. Wang, Weak injective and weak flat modules, Comm. Algebra 43 (2015), no. 9, 3857-3868. https://doi.org/10.1080/00927872.2014.924128
[8] K. R. Goodearl and R. B. Warfield Jr., An Introduction to Noncommutative Notherian Rings, Cambridge Univ. Press, Cambridge, 2004. https://doi.org/10.1017/ CB09780511841699
[9] C. Y. Hong, J. Y. Kim, and N. K. Kim, On von Neumann regular rings, Comm. Algebra 28 (2000), no. 2, 791-801. https://doi.org/10.1080/00927870008826860
[10] H. Khabazian, S. Safaeeyan, and M. R. Vedadi, Strongly duo modules and rings, Comm. Algebra 38 (2010), no. 8, 2832-2842. https://doi.org/10.1080/00927870903085245
[11] W. Li, J. Guan, and B. Ouyang, Strongly FP-injective modules, Comm. Algebra 45 (2017), no. 9, 3816-3824. https://doi.org/10.1080/00927872.2016.1247452
[12] W. K. Nicholson, J. K. Park, and M. F. Yousif, Principally quasi-injective modules, Comm. Algebra 27 (1999), no. 4, 1683-1693. https://doi.org/10.1080/0092787 9908826521
[13] W. K. Nicholson and M. F. Yousif, Principally injective rings, J. Algebra 174 (1995), no. 1, 77-93. https://doi.org/10.1006/jabr.1995.1117
[14] G. Puninskiĭ and R. Wisbauer, Σ-injective modules over left duo and left distributive rings, J. Pure Appl. Algebra 113 (1996), no. 1, 55-66. https://doi.org/10.1016/0022-4049(95)00153-0
[15] N. V. Sanh, K. P. Shum, S. Dhompongsa, and S. Wongwai, On quasi-principally injective modules, Algebra Colloq. 6 (1999), no. 3, 269-276.
[16] B. T. Stenström, Rings of quotients, Die Grundlehren der mathematischen Wissenschaften, Band 217, Springer, New York, 1975.
[17] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach Science Publishers, 1991.
[18] G. Xiao and W. Tong, On injectivity and P-injectivity, Bull. Korean Math. Soc. 43 (2006), no. 2, 299-307. https://doi.org/10.4134/BKMS.2006.43.2.299
[19] R. Yue Chi Ming, On (von Neumann) regular rings, Proc. Edinburgh Math. Soc. (2) 19 (1974/75), 89-91. https://doi.org/10.1017/S0013091500015418
[20] R. Yue Chi Ming, On simple P-injective modules, Math. Japon. 19 (1974), no. 3, 173176.
[21] R. Yue Chi Ming, On injectivity and p-injectivity. IV, Bull. Korean Math. Soc. 40 (2003), no. 2, 223-234. https://doi.org/10.4134/BKMS.2003.40.2.223

Fatemeh Gholami
Department of Mathematics
Payame Noor University
P.O.Box 19395-3697 Tehran, Iran

Email address: f.gholami@student.pnu.ac.ir
Zohreh Habibi
Department of Mathematics
Payame Noor University
P.O.Box 19395-3697 Tehran, Iran

Email address: zhabibi@pnu.ac.ir
Alireza Najafizadeh
Department of Mathematics
Payame Noor University
P.O.Box 19395-3697 Tehran, Iran

Email address: najafizadeh@pnu.ac.ir

[^0]: Received November 17, 2022; Revised August 8, 2023; Accepted November 27, 2023.
 2020 Mathematics Subject Classification. Primary 13C99.
 Key words and phrases. Principally, injective, quasi.
 This work was financially supported by a grant from Payame Noor University of I. R. of Iran.

