DOI QR코드

DOI QR Code

Research on the magnetic confinement of laser-induced plasma

레이저 유도 플라즈마에 대한 자기장 감금의 영향 연구

  • Eunjoo Hyeon (Bio-Nano Research Center (BNRC), SOOMBI Co., Ltd.) ;
  • Yong H. Ghym (Bio-Nano Research Center (BNRC), SOOMBI Co., Ltd.)
  • Received : 2024.03.07
  • Accepted : 2024.03.23
  • Published : 2024.03.31

Abstract

Most previous works about magnetic effect on plasma emission were interested in emission enhancement which was useful to various fields of plasma application. On the contrary, the following work is interested in plasma dissipation rarely reported in prior researches and expected to help advance plasma-controlling technique. Nd:YAG laser (1064 nm, 6 ns) was focused on three kinds of metals (Al, Ti and STS) and air. The permanent magnetic field (0.4 T) of Nd2Fe14B magnet was provided passing throughout laser-induced plasma. The spectra of plasma in both the presence and absence of the magnetic field were observed with varying laser power and delay time of the spectrograph. In this work it was uniquely discovered that the plasma always dissipated easily in the presence of magnetic field irrespective of the laser power. With the O I(777.42 nm)-line shape function fitted to Lorentz profile, its half width at half maximum (HWHM) was evaluated to verify that the magnetic field increased the plasma density. It is concluded that magnetic field facilitates not only plasma emission enhancement but also plasma dissipation, increasing recombination rate which is proportional to plasma density.

간단한 자기장 감금이 레이저 유도 플라즈마의 전하 입자들에 미치는 영향이 논의 되었다. 자기장 영향에 대한 이전 연구들은 주로 플라즈마 방전 세기의 향상이나 수명시간 연장에 집중되었다. 이와 대조적으로, 본 개발은 과거에 거의 다뤄지지 않았던, 플라즈마 소멸에 대해 연구하였다. 이는 플라즈마를 활용한 기술개발에 혁신적인 도움이 될 것으로 기대한다. Nd:YAG 레이저(1064 nm, 6 ns)가 3가지 타입의 금속 물질(Al, Ti, STS)과 공기 중에 집광되었다. Nd2Fe14B 자석으로 0.4T 크기의 자기장을 만들었고, 이를 레이저 유도 플라즈마에 관통시켰다. 플라즈마 스펙트럼은 레이저 파워와 분광기의 딜레이 타임을 조정해 가면서 자기장 여부에 따른 수치가 측정되었다. O I(777.42 nm), Fe I (520.447 nm), Ti I (503.649 nm), Al I (396.147 nm) 스펙트럼 분석을 통해 자기장에 의한 플라즈마의 소멸이 특정 조건에 상관없이 항상 촉진됨을 독점적으로 발견하였다.

Keywords

Acknowledgement

This research was financially supported by the Ministry of Small and Medium-sized Enterprises (SMEs) and Startups (MSS), Korea, under the "Regional Specialized Industry Development Plus Program (R&D, S3365640)" supervised by the Korea Technology and Information Promotion Agency for SMEs (TIPA).

References

  1. Chrisey, D. B. & Hubler, G. K, Pulsed Laser Deposition of Thin Films, Wiley, New York, 1994.
  2. Zel'Dovich, Ya. B. & Raizer, Yu. P, Physics of Shock Waves and High Temperature Hydrodynamics Phenomenon, Academic Press, New York, 1966.
  3. R. D. Hazeltine & J. D. Meiss, Plasma Confinement, Addison-Wesley Publishing Company, California, 1992.
  4. P. K. Diwakar, D. W. Hahn, "Study of early laser-induced plasma dynamics: transient electron density gradients via thomson scattering and stark broadening, and the implications on laser-induced breakdown spectroscopy measurement," Spectrochimica Acta Part B. vol.63, pp.1038-1046, 2008. DOI: 10.1016/j.sab.2008.07.003
  5. Virendra N. Rai, Jagdish P. Singh, Fang Y. Yueh, and Robert L. Cook, "Study of optical emission from laser-produced plasma expanding across an external magnetic field," Laser and Particle Beams. vol.21, pp.65-71, 2003. DOI: 10.1017/S0263034603211137
  6. J. A. Bittencourt, Fundamentals of Plasma Physics, Springer, New York, 2004.
  7. K. J. Mason and J. M. Goldberg, "Characterization of a laser plasma in a pulsed magnetic field. part II: time-resolved emission and absorption studies," Appl. Spectrosc. vol.45, pp.1444-1455, 1991.
  8. Hans R. Griem, Plasma spectroscopy, McGraw Hill, New York, 1964.
  9. V. N. Rai, M. Shukla, and H. C, "An x-ray biplanar photodiode and the x-ray emission from magnetically confined laser produced plasma," Paramana J.Phys. vol.52, pp.49-65, 1999. https://www.ias.ac.in/article/fulltext/pram/052/01/0049-0065 https://doi.org/10.1007/BF02827601
  10. H. C. Joshi, Ajai Kumar, R. K. Singh, V. Prahlad, "Effect of a transverse magnetic field on the plume emission in laser-produced plasma: an atomic analysis," Spectrochimica Acta Part B. vol.65, pp.415-419, 2010. DOI: 10.1016/j.sab.2010.04.018
  11. Virendra N. Rai, Awadhesh K. Rai, Fang-Yu Yueh, and Jagdish P. Singh, "Optical emission from laser-induced breakdown plasma of solid and liquid samples in the presence of a magnetic field" Applied optics. vol.42, no.12, pp.2085-2093, 2003. DOI: 10.1364/ao.42.002085
  12. R. A. Multari, L. E. Foster, D. A. Cremers, and M. J. Ferris, "Effect of sampling geometry on elemental emissions in laser-induced breakdown spectroscopy," Appl. Spectrosc. vol.12, pp.1483-1499, 1996. DOI: 10.1366/0003702963904593
  13. R. Sattmann, V. Sturm, and R. Noll, "Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses," J. Phys. D vol.28, pp.2181-2187, 1995. DOI: 10.1088/0022-3727/28/10/030
  14. L. St-Onge, M. Sabasabi, and P. Cielo, "Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode," Spectrochim Acta Part B. vol.53, pp.407-415, 1998. DOI: 10.1016/S0584-8547(98)00080-9
  15. D. N. Stratis, K. L. Eland, and S. M. Angel, "Effect of pluse delay time on a pre-ablation dual-pulse LIBS plasma," Appl. Spectrosc. vol.55, pp.1297-1303, 2001 DOI: 10.1366/0003702011953649
  16. Y. Ito, O. Ueki, and S. Nakamura, "Determination of colloidal iron in water by laser-induced breakdown spectroscopy," Anal. Chim. Acta. vol. 229, pp.401-405, 1995. https://doi.org/10.1016/0003-2670(94)00313-B
  17. Virendra N. Rai, Hansheng Zhang, Fang Y. Yueh, Jagdish P. Singh, and Akshaya Kumar, "Optical emission from laser-induced breakdown plasma of solid and liquid samples in the presence of a magnetic field," Applied Optics. Vol.42, No.12, pp.2085-2093, 2003. DOI: 10.1364/ao.42.002085
  18. Elhassan A, Giakoumaki A, Anglos D, Ingo G, Robbiola L, Harith MA, "Nanosecond and femtosecond laser induced breakdown spectroscopic analysis of bronze alloys," Spectrochim Acta B. vol.63, no.4, pp.504-11, 2008. DOI: 10.1016/j.sab.2008.02.003
  19. Abdel-Salam ZA, Galmed AH, Tognoni E, Harith MA, "Estimation of calcified tissues hardness via calcium and magnesium ionic to atomic line intensity ratio in laser induced breakdown spectra," Spectrochim Acta B. vol.62, no.12, pp.1343-7, 2007. DOI: 10.1016/j.sab.2007.10.033
  20. Galmed AH, Harith MA, "Temporal follow up of the LTE conditions in aluminum laser induced plasma at different laser energies," Appl. Phys. B vol.91, no.3-4, pp.651-60, 2008. DOI:10.1007/s00340-008-2971-0
  21. Asmaa Elhassan, Hussein M. Abd Elmoniem, Arafa K. Kassem, Mohamed A. Hairth, "Effect of applying static electric field on the physical parameters and dynamics of laser-induced plasma," Journal of Advanced Research. vol.1, pp.129-136, 2010. DOI: 10.1016/j.jare.2010.03.004
  22. V. N. Rai, M. Shukla, and H. C. Pant, "Some studies on picosecond laser produced plasma expanding across a uniform external magnetic field," Laser Part. Beams. vol.16, pp.431-443, 1998. DOI: 10.1017/S0263034600011265
  23. V. N. Rai, J. P. Singh, F. Y. Yueh, and R. C. Cook, The 32nd AIAA Plasma Dynamics and Lasers Conference, Anaheim, Calif., 11-14 June, 2001.
  24. Hans R. Griem, Spectral Line Broadening by Plasmas, Academic Press, New York and London, 1974.
  25. David A. Cremers & Leon J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy, John Wiley & Sons Ltd, Chichester, 2006.
  26. C. Colon, G. Hatem, E. Verdugo, P. Ruiz, and J. Campos, "Measurement of the Stark broadening and shift parameters for several ultraviolet lines of singly ionized aluminum," J. Appl. Phys. vol.73 no.10, pp.4752-4758, 1993. DOI: 10.1063/1.353839
  27. I. H. Hutchinson, Principles of Plasma Diagnostics, Cambridge University Press, New York, 2002.
  28. Hans R. Griem, Principles of Plasma Spectroscopy, Cambridge University Press, Cambridge, 1997.
  29. H. Amamoua, A. Bois, B. Ferhat, R. Redon, B. Rossetto, M. Ripert, "Correction of the self-absorption for reversed spectral lines: application to two resonance lines of neutral aluminium," J. Quant. Spectrosc. Radiat. Transfer vol.77, pp. 365-372, 2003. DOI: 10.1016/S0022-4073(02)00163-2
  30. A. M. El Sherbini, H. Hegazy, Th. M. El Sherbini, "Measurement of electron density utilizing the Hα-line from laser produced plasma in air," Spectrochimica Acta Part B. vol.61, pp.532-539, 2006. DOI: 10.1016/j.sab.2006.03.014
  31. A. Escarguel, B. Ferha, A. Lesage, J. Richou, "A single laser spark in aqueous medium," J. Quant. Spectrosc. Radiat. Transfer vol.64, pp.353-361, 2000. DOI: 10.1016/S0022-4073(99)00108-9
  32. T. Wujec, J. Halenka, A. Jazgara, J. Musielok, "Calibration of the width of the NI spectral line at 7915.42 Afor electron density determination," J. Quant. Spectrosc. Radiat. Transfer vol.74, pp.663-666, 2002. https://doi.org/10.1016/S0022-4073(01)00264-3
  33. S. Rai, S. N. Thakur, A. K. Rai, "Identification of nitro-compounds with LIBS," Appl. Phys. B vol.91, pp.645-650, 2008. DOI: 10.1007/s00340-008-3040-4
  34. Donald Umstadter, "Relativistic laser-plasma interactions," J. Phys. D 36, R151-R165, 2003. DOI: 10.1088/0022-3727/36/8/202
  35. M. Khaleeq-ur-Rahman, K. A. Bhatti, M. S. Rafique, A. Latif, K. T. Chaudhary, "Magnetic field effect on electron emission from plasma," Vacuum. vol.83, pp.936-941, 2009. DOI: 10.1016/j.vacuum.2008.10.008
  36. A. W. Allen, M. Blaha, W. W. Jones, A. Sanchez, and Hans R. Griem, "Stark-broadening measurement and calculations for a singly ionized aluminum line," Physical Review A. vol.11, no.2, 1975. DOI: 10.1103/PhysRevA.11.477