DOI QR코드

DOI QR Code

G3 HEXIC Bézier CURVES APPROXIMATING CONIC SECTIONS

  • 투고 : 2024.03.11
  • 심사 : 2024.03.25
  • 발행 : 2024.03.25

초록

In this paper we present a method of conic section approximation by hexic Bézier curves. The hexic Bézier approximants are G3 Hermite interpolations of conic sections. We show that there exists at least one hexic Bézier approximant for each weight of the conic section The hexic Bézier approximant depends one parameter and it can be obtained by solving a quartic polynomial, which is solvable algebraically. We present the explicit upper bound of the Hausdorff distance between the conic section and the hexic Bézier approximant. We also prove that our approximation method has the maximal order of approximation. The numerical examples for conic section approximation by hexic Bézier curves are given and illustrate our assertions.

키워드

과제정보

This study was supported by research funds from Chosun University, 2023, and by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. NRF-2021R1F1A1045830). The authors are very grateful to two anonymous reviewers for their valuable comments and constructive suggestions.

참고문헌

  1. K. Hollig and J. Koch. Geometric Hermite interpolation with maximal order and smoothness, Comput. Aided Geom. Design, 13(8) (1996), 681-695.  https://doi.org/10.1016/0167-8396(96)00004-0
  2. C. de Boor, K. Hollig, and M. Sabin. High accuracy geometric Hermite interpolation, Comput. Aided Geom. Design, 4 (1987), 269-278.  https://doi.org/10.1016/0167-8396(87)90002-1
  3. K. Hollig and J. Koch. Geometric Hermite interpolation Comput. Aided Geom. Design, 12(6) (1995), 567-580.  https://doi.org/10.1016/0167-8396(94)00034-P
  4. T. Dokken, M. Daehlen, T. Lyche, and K. Morken. Good approximation of circles by curvature-continuous Bezier curves, Comput. Aided Geom. Design, 7 (1990), 33-41.  https://doi.org/10.1016/0167-8396(90)90019-N
  5. K. Morken. Best approximation of circle segments by quadratic Bezier curves, Curves and Surfaces, pages 387-396, Academic Press, 1991. 
  6. M. Goldapp. Approximation of circular arcs by cubic polynomials, Comput. Aided Geom. Design, 8 (1991), 227-238.  https://doi.org/10.1016/0167-8396(91)90007-X
  7. Y. J. Ahn and H. O. Kim. Approximation of circular arcs by Bezier curves, J. Comput. Appl. Math., 81 (1997), 145-163.  https://doi.org/10.1016/S0377-0427(97)00037-X
  8. L. Fang. Circular arc approximation by quintic polynomial curves, Comput. Aided Geom. Design, 15 (1998), 843-861.  https://doi.org/10.1016/S0167-8396(98)00019-3
  9. S. H. Kim and Y. J. Ahn. Approximation of circular arcs by quartic Bezier curves, Comput.-Aided Design, 39(6) (2007), 490-493.  https://doi.org/10.1016/j.cad.2007.01.004
  10. G. Jaklic. Uniform approximation of a circle by a parametric polynomial curve, Comput. Aided Geom. Design, 41 (2016), 36-46.  https://doi.org/10.1016/j.cagd.2015.10.004
  11. G. Jaklic and J. Kozak. On parametric polynomial circle approximation, Numerical Algorithms, 77 (2018), 433-450.  https://doi.org/10.1007/s11075-017-0322-0
  12. M. Floater. An O(h2n) Hermite approximation for conic sections, Comput. Aided Geom. Design, 14 (1997), 135-151.  https://doi.org/10.1016/S0167-8396(96)00025-8
  13. M. Floater. High-order approximation of conic sections by quadratic splines, Comput. Aided Geom. Design, 12(6) (1995), 617-637.  https://doi.org/10.1016/0167-8396(94)00037-S
  14. L. Fang. G3 approximation of conic sections by quintic polynomial, Comput. Aided Geom. Design, 16 (1999), 755-766.  https://doi.org/10.1016/S0167-8396(99)00017-5
  15. Y. J. Ahn. Approximation of conic sections by curvature continuous quartic Bezier curves, Comput. Math. Appl., 60 (2010), 1986-1993.  https://doi.org/10.1016/j.camwa.2010.07.032
  16. G. Jaklic, J. Kozak, M. Krajnc, V. Vitrih, and E. Zagar. High-order parametric polynomial approximation of conic sections, Constr. Approx., 38 (2013), 1-18.  https://doi.org/10.1007/s00365-013-9189-z
  17. H. M. Yoon and Y. J. Ahn. Circular arc approximation by hexic polynomial curves, Comput. Appl. Math., 42 (2023). 
  18. Y. J. Ahn. Conic approximation of planar curves, Comput.-Aided Design, 33 (2001), 867-872.  https://doi.org/10.1016/S0010-4485(00)00110-X
  19. I. Juhasz.Gardener's spline curve, Annales Mathematicae et Informaticae, 47 (2017), 109-118. 
  20. A. Sestini, L. Landolfi, and C. Manni. On the approximation order of a space data-dependent PH quintic Hermite interpolation scheme, Comput. Aided Geom. Design, 30 (2013), 148-158. https://doi.org/10.1016/j.cagd.2012.07.004