Acknowledgement
This study was supported by research funds from Chosun University, 2023, and by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. NRF-2021R1F1A1045830). The authors are very grateful to two anonymous reviewers for their valuable comments and constructive suggestions.
References
- K. Hollig and J. Koch. Geometric Hermite interpolation with maximal order and smoothness, Comput. Aided Geom. Design, 13(8) (1996), 681-695. https://doi.org/10.1016/0167-8396(96)00004-0
- C. de Boor, K. Hollig, and M. Sabin. High accuracy geometric Hermite interpolation, Comput. Aided Geom. Design, 4 (1987), 269-278. https://doi.org/10.1016/0167-8396(87)90002-1
- K. Hollig and J. Koch. Geometric Hermite interpolation Comput. Aided Geom. Design, 12(6) (1995), 567-580. https://doi.org/10.1016/0167-8396(94)00034-P
- T. Dokken, M. Daehlen, T. Lyche, and K. Morken. Good approximation of circles by curvature-continuous Bezier curves, Comput. Aided Geom. Design, 7 (1990), 33-41. https://doi.org/10.1016/0167-8396(90)90019-N
- K. Morken. Best approximation of circle segments by quadratic Bezier curves, Curves and Surfaces, pages 387-396, Academic Press, 1991.
- M. Goldapp. Approximation of circular arcs by cubic polynomials, Comput. Aided Geom. Design, 8 (1991), 227-238. https://doi.org/10.1016/0167-8396(91)90007-X
- Y. J. Ahn and H. O. Kim. Approximation of circular arcs by Bezier curves, J. Comput. Appl. Math., 81 (1997), 145-163. https://doi.org/10.1016/S0377-0427(97)00037-X
- L. Fang. Circular arc approximation by quintic polynomial curves, Comput. Aided Geom. Design, 15 (1998), 843-861. https://doi.org/10.1016/S0167-8396(98)00019-3
- S. H. Kim and Y. J. Ahn. Approximation of circular arcs by quartic Bezier curves, Comput.-Aided Design, 39(6) (2007), 490-493. https://doi.org/10.1016/j.cad.2007.01.004
- G. Jaklic. Uniform approximation of a circle by a parametric polynomial curve, Comput. Aided Geom. Design, 41 (2016), 36-46. https://doi.org/10.1016/j.cagd.2015.10.004
- G. Jaklic and J. Kozak. On parametric polynomial circle approximation, Numerical Algorithms, 77 (2018), 433-450. https://doi.org/10.1007/s11075-017-0322-0
- M. Floater. An O(h2n) Hermite approximation for conic sections, Comput. Aided Geom. Design, 14 (1997), 135-151. https://doi.org/10.1016/S0167-8396(96)00025-8
- M. Floater. High-order approximation of conic sections by quadratic splines, Comput. Aided Geom. Design, 12(6) (1995), 617-637. https://doi.org/10.1016/0167-8396(94)00037-S
- L. Fang. G3 approximation of conic sections by quintic polynomial, Comput. Aided Geom. Design, 16 (1999), 755-766. https://doi.org/10.1016/S0167-8396(99)00017-5
- Y. J. Ahn. Approximation of conic sections by curvature continuous quartic Bezier curves, Comput. Math. Appl., 60 (2010), 1986-1993. https://doi.org/10.1016/j.camwa.2010.07.032
- G. Jaklic, J. Kozak, M. Krajnc, V. Vitrih, and E. Zagar. High-order parametric polynomial approximation of conic sections, Constr. Approx., 38 (2013), 1-18. https://doi.org/10.1007/s00365-013-9189-z
- H. M. Yoon and Y. J. Ahn. Circular arc approximation by hexic polynomial curves, Comput. Appl. Math., 42 (2023).
- Y. J. Ahn. Conic approximation of planar curves, Comput.-Aided Design, 33 (2001), 867-872. https://doi.org/10.1016/S0010-4485(00)00110-X
- I. Juhasz.Gardener's spline curve, Annales Mathematicae et Informaticae, 47 (2017), 109-118.
- A. Sestini, L. Landolfi, and C. Manni. On the approximation order of a space data-dependent PH quintic Hermite interpolation scheme, Comput. Aided Geom. Design, 30 (2013), 148-158. https://doi.org/10.1016/j.cagd.2012.07.004