DOI QR코드

DOI QR Code

Number of Phase Screens Required for Simulation of a High-energy Laser Beam's Propagation Experiencing Atmospheric Turbulence and Thermal Blooming

대기 난류와 열적 블루밍을 겪는 고출력 레이저 빔의 대기 전파 시뮬레이션에 필요한 위상판 개수 분석

  • Seokyoung Yoon (School of Electrical Engineering, Korea Advanced Institute of Science and Technology) ;
  • Woohyeon Moon (School of Electrical Engineering, Korea Advanced Institute of Science and Technology) ;
  • Hoon Kim (School of Electrical Engineering, Korea Advanced Institute of Science and Technology)
  • 윤석영 (한국과학기술원 전기및전자공학부) ;
  • 문우현 (한국과학기술원 전기및전자공학부) ;
  • 김훈 (한국과학기술원 전기및전자공학부)
  • Received : 2023.12.26
  • Accepted : 2024.01.31
  • Published : 2024.04.25

Abstract

We analyze the number of phase screens required for the simulation of a high-energy laser beam's propagation over an atmospheric channel. For high-energy lasers exceeding tens of kilowatts (kW) in power, the laser beam is mainly affected by atmospheric turbulence and thermal blooming. When using the split-step method to implement losses due to atmospheric absorption and scattering and distortion of the beam due to turbulence and thermal blooming, the number of phase screens is a critical factor in determining the accuracy and time required for the simulation. By comparing simulation results obtained using a large number of phase screens (e.g., 150 screens) under a wide range of atmospheric turbulence conditions, we provide new guidelines for the number of phase screens required for simulating the beam propagation of a high-power laser below 2.5×106 W/m2 (e.g., a 500-kW laser beam having a 50-cm diameter).

본 연구에서는 킬로와트 급 고출력 레이저의 대기 전파 시뮬레이션에 필요한 위상판의 개수를 분석하였다. 킬로와트 급 레이저가 대기 중에 전파될 때, 주로 대기 난류와 열적 블루밍 효과에 영향을 받는다. 이에 따라 split step 방법을 사용하여 대기의 흡수 및 산란에 의한 손실, 그리고 난류와 열적 블루밍으로 인한 빔의 왜곡 현상을 구현할 때, 위상판의 개수는 시뮬레이션의 정확성 및 소요 시간을 결정짓는 중요한 요소이다. 본 연구에서는 광범위한 대기 난류 조건에서 많은 수의 위상판(예: 150개)을 사용하여 시뮬레이션을 진행하고, 레이저 출력 밀도 2.5×106 W/m2 (50 cm 직경 레이저 빔의 경우 500 kW 출력) 미만의 고출력 레이저 빔 전파 시뮬레이션에 필요한 위상판 개수에 대한 새로운 가이드 라인을 제시한다.

Keywords

Acknowledgement

BK21 Four 사업.

References

  1. P. E. Ross, "Economics drives a ray-gun resurgence: Lasers, cheaper by the shot, should work well against drones and cruise missiles," IEEE Spectrum 60, 40-41 (2023).  https://doi.org/10.1109/MSPEC.2023.10006667
  2. B. Zohuri, Directed Energy Weapons, 1st ed. (Springer Charm, USA, 2016). 
  3. P. E. Nielsen, Effects of Directed Energy Weapons, 1st ed. (CreateSpace Independent Publishing, USA, 2012). 
  4. W. Moon and H. Kim, "Standard deviation of fiber-coupling efficiency for free-space optical communication through atmospheric turbulence," IEEE Photonics J. 15, 7302507 (2023). 
  5. R. Frehlich, "Simulation of laser propagation in a turbulent atmosphere," Appl. Opt. 39, 393-397 (2020).  https://doi.org/10.1364/AO.39.000393
  6. Z. Chen, D. Zhang, C. Xiao, and M. Qin, "Precision analysis of turbulence phase screens and their influence on the simulation of Gaussian beam propagation in turbulent atmosphere," Appl. Opt. 59, 3726-3735 (2020).  https://doi.org/10.1364/AO.389121
  7. D. L. Knepp, "Multiple phase-screen calculation of the temporal behavior of stochastic waves," Proc. IEEE 71, 722-737 (1983).  https://doi.org/10.1109/PROC.1983.12660
  8. J. M. Martin and S. M. Flatte, "Intensity images and statistics from numerical simulation of wave propagation in 3-D random media," Appl. Opt. 27, 2111-2126 (1988).  https://doi.org/10.1364/AO.27.002111
  9. M. F. Spencer, "Wave-optics investigation of turbulence thermal blooming interaction: II. Using time-dependent simulations," Opt. Eng. 59, 081805 (2020). 
  10. C. E. Murphy and M. F. Spencer, "Investigation of turbulence thermal blooming interaction using the split-step beam propagation method," Proc. SPIE 10772, 1077208 (2018). 
  11. L. C. Andrews and R. L. Phillips, Laser Beam Propagation Through Random Media, 2nd ed. (SPIE Press, USA, 2005). 
  12. I. I. Kim, B. McArthur, and E. J. Korevaar, "Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications," Proc. SPIE 4214, 26-37 (2001). 
  13. D. T. Ha, V. V. Mai, and H. Kim, "Comparison of phase-screen-generation methods for simulating the effects of atmospheric turbulence," Korean J. Opt. Photonics 30, 87-93 (2019). 
  14. F. G. Gebhardt, "Twenty-five years of thermal blooming: an overview," Proc. SPIE 1221, 2-25 (1990).  https://doi.org/10.1117/12.18326
  15. L. C. Bradley and J. Herrmann, "Phase compensation for thermal blooming," Appl. Opt. 13, 331-334 (1974).  https://doi.org/10.1364/AO.13.000331
  16. P. A. Konyaev and V. P. Lukin, "Thermal distortions of focused laser beams in the atmosphere," Appl. Opt. 24, 415-421 (1985).  https://doi.org/10.1364/AO.24.000415
  17. L. C. Andrews, R. L. Philips, R. J. Sasiela, and R. Parenti, "Beam wander effects on the scintillation index of a focused beam," Proc. SPIE 5793, 28-37 (2005). 
  18. J. M. Martin and S. M. Flatte, "Simulation of point-source scintillation through three-dimensional random media," J. Opt. Soc. Am. A 7, 838-847 (1990).  https://doi.org/10.1364/JOSAA.7.000838
  19. V. V. Mai, D. T. Ha, and H. Kim, "Link availability of terrestrial free-space optical communication systems in Korea," Korean J. Opt. Photonics 29, 77-84 (2018). 
  20. E. Ostertagova, "Modelling using polynomial regression," Procedia Engineering 48, 500-506 (2012).  https://doi.org/10.1016/j.proeng.2012.09.545
  21. H. Kotake, Y. Abe, D. R. Kolev, Y. Saito, Y. Takahashi, T. Fuse, Y. Satoh, T. Itahashi, S. Yamakawa, H. Tsuji, and M. Toyoshima, "Experimental analysis of atmospheric channel model with misalignment fading for GEO satellite-to-ground optical link using 'LUCAS' onboard optical data relay satellite," Opt. Express 31, 21351-21366 (2023).  https://doi.org/10.1364/OE.491808
  22. T. J. Karr, J. R. Morris, D. H. Chambers, J. A. Viecelli, and P. G. Cramer, "Perturbation growth by thermal blooming in turbulence," J. Opt. Soc. Am. B 7, 1103-1124 (1990). https://doi.org/10.1364/JOSAB.7.001103