DOI QR코드

DOI QR Code

Enhancing ductility in carbon fiber reinforced polymer concrete sections: A multi-scale investigation

  • Moab Maidi (Department of Civil and Environmental Engineering, Ben-Gurion University of the Negev) ;
  • Gili Lifshitz Sherzer (Department of Civil Engineering, Ariel University) ;
  • Erez Gal (Department of Civil and Environmental Engineering, Ben-Gurion University of the Negev)
  • Received : 2023.08.16
  • Accepted : 2023.11.28
  • Published : 2024.04.25

Abstract

As concrete dominates the construction industry, alternatives to traditionally used steel reinforcement are being sought. This study explored the suitability of carbon fiber-reinforced polymer (CFRP) as a substitute within rigid frames, focusing on its impact on section ductility and overall structural durability against seismic events. However, current design guidelines address quasi-static loads, leaving a gap for dynamic or extreme circumstances. Our approach included multiscale simulations, parametric study, and energy dissipation analyses, drawing upon a unique adaptation of modified compression field theory. In our efforts to optimize macro and microparameters to improve yield strength, manage brittleness, and govern failure modes, we also recognized the potential of CFRP's high corrosion resistance. This characteristic of CFRP could significantly reduce the frequency of required repairs, thereby contributing to enhanced durability of the structures. The research reveals that CFRP's durability and seismic resistance are attributed to plastic joints within compressed fibers. Notably, CFRP can impart ductility to structural designs, effectively balancing its inherent brittleness, particularly when integrated with quasi-brittle materials. This research challenges the notion that designing bendable components with carbon fiber reinforcement is impractical. It shows that creating ductile bending components with CFRP in concrete is feasible despite the material's brittleness. This funding overturns conventional assumptions and opens new avenues for using CFRP in structural applications where ductility and resilience are crucial.

Keywords

References

  1. ACI 440 (2002), Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures, American Concrete Institute, Farmington Hills, MI, USA.
  2. ACI 440R-96 (2002), State-of-the-Art Report on Fiber Reinforced Plastic (FRP) Reinforcement for Concrete Structures, American Concrete Institute, Farmington Hills, MI, USA.
  3. Ahmed, M.M., Farghal, O.A., Nagah, A.K and Haridy, A.A. (2007), "Effect of confining method on the ductility of over-reinforced concrete beams", J. Eng. Sci., 35(3), 617-633. https://doi.org/10.21608/jesaun.2007.112873.
  4. Akbas, T.T., Celik, O.C., Yalcin, C. and Ilki, A. (2016), "Monotonic and cyclic bond behavior of deformed CFRP bars in high strength concrete", Polym., 8(6), 11. https://doi.org/10.3390/polym8060211.
  5. Al-Kamal, M.K. (2019), "Nominal flexural strength of high-strength concrete beams", Adv. Concrete Constr., 7(1), 1-9. https://doi.org/10.12989/acc.2019.7.1.001.
  6. Bazan, J.L. and Fernandez-Davila, V.I. (2020), "Evaluation of the experimental curvature ductility of RC beams externally strengthened with CFRP bands", Struct., 26, 1010-1020. https://doi.org/10.1016/j.istruc.2020.04.030.
  7. Bentz, E.C. (2000), "Sectional analysis of reinforced concrete members", Ph.D. Dissertation, University of Toronto, Toronto, ON, Canada.
  8. Choi, K.K., Urgessa, G., Taha, M.M. and Maji, A.K. (2008), "Quasi-balanced failure approach for evaluating moment capacity of FRP underreinforced concrete beams", J. Compos. Constr., 12(3), 236-245. https://doi.org/10.1061/(asce)1090-0268(2008)12:3(236).
  9. CNR-DT 200 R1 (2012), Guide for the Design and Construction of Externally Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Existing Structures Materials, RC and PC Structures, Masonry Structures, Consiglio Nazionale delle Ricerche, Roma, Italy.
  10. CSA S806-12 (2012), Design and Construction of Building Structures with Fibre-Reinforced Polymer, Canadian Standards Association, Toronto, ON, Canada.
  11. CSA S807-10 (2015), Specification for Fibre-Reinforced Polymers, Canadian Standards Association, Toronto, ON, Canada.
  12. CSA-A23.3-04 (2007), Design of Concrete Structures, Standards Council of Canada, Ottawa, ON, Canada.
  13. Djauhari, Z. and Sitompul, I.R. (2019), "Seismic performance of building reinforced with CFRP bars", MATEC Web Conf., 276, 01021. https://doi.org/10.1051/matecconf/201927601021.
  14. Eurocode (1992), Design of Concrete Structures. Lausanne Part 2: European Committee for Standardization, Brussels, Belgium.
  15. Golias, E., Zapris, A.G., Kytinou, V.K., Osman, M., Koumtzis, M., Siapera, D., Chalioris, C.E. and Karayannis, C.G. (2021), "Application of X-shaped cfrp ropes for structural upgrading of reinforced concrete beam-column joints under cyclic loading-experimental study", Fibers, 9(7), 42. https://doi.org/10.3390/fib9070042.
  16. Habibi, O., Khaloo, A. and Abdoos, H. (2021), "Seismic behavior comparison of RC shear walls strengthened using FRP composites and steel elements", Sci. Iran., 28(3), 1-27. https://doi.org/10.24200/sci.2020.55328.4170.
  17. Kisicek, T. and Soric, Z. (2008), "Determining deflection of concrete girders strengthened with fibre reinforced polymers", Gradevinar, 60(6), 499-511.
  18. Kisicek, T., Renic, T., Lazarevic, D. and Hafner, I., (2020), "Compressive shear strength of reinforced concrete walls at high ductility levels", Sustainab., 12(11), 1-16. https://doi.org/10.3390/su12114434.
  19. Kytinou, V.K. and Kosmidou, P.M.K. (2022), "Applied sciences numerical analysis exterior RC beam-column joints with CFRP bars as beam's tensional reinforcement under cyclic reversal deformations", Appl. Sci., 19(7419), 1-19.
  20. Maaddawy, T., El Sayed, M. and Abdel-Magid, B. (2010), "The effects of cross-sectional shape and loading condition on performance of reinforced concrete members confined with carbon fiber-reinforced polymers", Mater. Des., 31(5), 2330-2341. https://doi.org/10.1016/j.matdes.2009.12.004.
  21. Mo, Y.L., Hwang, C. and Wang, J. (2004), "Seismic response of fire-damaged reinforced concrete buildings", Adv. Struct. Eng., 7(1), 95-109. https://doi.org/10.1260/136943304322985792.
  22. Mobasher, B. (2007), "Expressions for homogenized fiber-reinforced concrete", ACI Mater. J., 10(1), 351-359.
  23. Mostofinejad, D., Akhlaghi, A. and Eslami, A. (2018), "Estimating the seismic performance of CFRP-retrofitted RC beam-column connections using fiber-section analysis", J. Earthq. Eng., 22(6), 1092-1110. https://doi.org/10.1080/13632469.2016.1269696.
  24. Naser, M.Z., Hawileh, R.A. and Abdalla, J. (2021), "Modeling strategies of finite element simulation of reinforced concrete beams strengthened with FRP: A review", J. Compos. Sci., 5(1), 1-15. https://doi.org/10.3390/jcs5010019.
  25. Ngo, T.T., Pham, T.M. and Hao, H. (2020), "Ductile and dry exterior joints using CFRP bolts for moment-resisting frames", Struct., 28, 668-684. https://doi.org/10.1016/j.istruc.2020.09.020.
  26. Ni, H., Li, R. and Aboutaha, R.S. (2023), "Strengthening of prestressed girder-deck system with partially debonding strand by the use of CFRP or steel plates: Analytical investigation", Comput. Concrete, 31(4), 349-358. https://doi.org/10.12989/cac.2023.31.4.349.
  27. Park, H.G., Baek, J.W. and Kim, S.H. (2019), "Effect of high-strength reinforcement for shear strength and shear-friction strength of RC walls subjected to cyclic lateral loading", Concrete Structures in Earthquake, Springer, Singapore.
  28. Park, R. and Paulay, T. (1974), Reinforcd Concrete Structure, John Wiley & Sons, Hoboken, NJ, USA.
  29. Paulay, T. (1995), "The philosophy and application of capacity design", Sci. Iran., 2(2), 117-136.
  30. Priastiwi, Y.A. and Imran, I. (2015), "The effect of different shapes of confinement in compression zone on beam's ductility subjected to monotonic loading", Procedia Eng., 125, 918-924. https://doi.org/10.1016/j.proeng.2015.11.098.
  31. Qureshi, J. (2022), "A review of fibre reinforced polymer structures", Fibers, 10(3), 27. https://doi.org/10.3390/fib10030027.
  32. Rafi, M.M., Nadjai, A., Ali, F. and Talamona, D. (2008), "Aspects of behaviour of CFRP reinforced concrete beams in bending", Constr. Build. Mater., 22(3), 277-285. https://doi.org/10.1016/j.conbuildmat.2006.08.014.
  33. Rafi, M.M., Nadjai, A. and Ali, F. (2007), "Experimental testing of concrete beams reinforced with carbon FRP bars", J. Compos. Mater., 41(22), 2657-2673. https://doi.org/10.1177/0021998307078727.
  34. Renic, T. and Kisicek, T. (2021), "Ductility of concrete beams reinforced with FRP rebars", Build., 11(9), 424. https://doi.org/10.3390/buildings11090424.
  35. Sadowski, L. and Nikoo, M. (2014), "Corrosion current density prediction in reinforced concrete by imperialist competitive algorithm", Neural Comput. Appl., 25, 1627-1638. https://doi.org/10.1007/s00521-014-1645-6.
  36. Sanz, B., Planas, J. and Sancho, J.M. (2018), "Study of the loss of bond in reinforced concrete specimens with accelerated corrosion by means of push-out tests", Constr. Build. Mater., 160, 598-609. https://doi.org/10.1016/j.conbuildmat.2017.11.093.
  37. Song, S., Wang, G., Min, X., Duan, N. and Tu, Y. (2021), "Experimental study on cyclic response of concrete frames reinforced by steel-CFRP hybrid reinforcement", J. Build. Eng., 34, 101937. https://doi.org/10.1016/j.jobe.2020.101937.
  38. Thamrin, R., Zaidir, Z. and Iwanda, D. (2022), "Ductility estimation for flexural concrete beams longitudinally reinforced with hybrid FRP-steel bars", Polym., 14(5), 1017. https://doi.org/10.3390/polym14051017.
  39. Wang, L., Yi, J., Zhang, J., Chen, W. and Fu, F. (2021), "Short-term flexural stiffness prediction of CFRP bars reinforced coral concrete beams", Mater., 14(2), 467. https://doi.org/10.3390/ma14020467.
  40. Whitney, C.S. (1937), "Design of reinforced concrete members under flexure or combined flexure and direct compression", J. Proc., 33(3), 483-498.
  41. Zafar, A. and Andrawes, B. (2015), "Seismic behavior of SMAFRP reinforced concrete frames under sequential seismic hazard", Eng. Struct., 98, 163-173. https://doi.org/10.1016/j.engstruct.2015.03.045.
  42. Zhou, F., Zhang, J., Song, S., Yang, D. and Wang, C. (2019), "Effect of temperature on material properties of carbon fiber reinforced polymer (CFRP) tendons: Experiments and model assessment", Mater., 12(7), 1025. https://doi.org/10.3390/ma12071025.
  43. Zia, A., Pu, Z., Holly, I., Umar, T. and Tariq, M.A.U.R. (2022), "Development of an analytical model for the FRP Retrofitted deficient interior reinforced concrete beam-column joints", Appl. Sci., 12(5), 2339. https://doi.org/10.3390/app12052339.