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Abstract
In this paper, we explore nonlinear sufficient dimension reduction (SDR) methods, with a primary focus on

establishing a foundational framework that integrates various nonlinear SDR methods. We illustrate the gener-
alized sliced inverse regression (GSIR) and the generalized sliced average variance estimation (GSAVE) which
are fitted by the framework. Further, we delve into nonlinear extensions of inverse moments through the kernel
trick, specifically examining the kernel sliced inverse regression (KSIR) and kernel canonical correlation analysis
(KCCA), and explore their relationships within the established framework. We also briefly explain the nonlinear
SDR for functional data. In addition, we present practical aspects such as algorithmic implementations. This
paper concludes with remarks on the dimensionality problem of the target function class.
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1. Introduction

In the rapidly expanding field of data science, we frequently encounter high-dimensional datasets,
which present challenges in extracting meaningful information due to the curse of dimensionality.
Central to addressing these challenges is the concept of sufficient dimension reduction (SDR), which
is a collection of methodologies about supervised dimension reduction without significant loss of
regression information. More precisely, the classic linear SDR seeks to find a lower-dimensional space
of linear transformation of a predictor random variable X without losing regression information. For
example, let X and Y be random elements in Rp and R. The goal of the linear SDR is to find β ∈ Rp×d,
d < p such that

Y X | βTX. (1.1)

It implies that the relationship between Y and X is fully described d-dimensional random variable
βTX. Since d < p, if β is available, we do not need to use all the variables in X. Instead, we replace
it with βTX, which means that dimension reduction is possible. The subspace spanned by columns of
β satisfying (1.1) is called the sufficient dimension reduction subspace and the minimal subspace of
sufficient dimension reduction subspace is called the central dimension reduction subspace or central
subspace, which is denoted by SY |X . The existence of the central subspace is described in Cook
(1998).
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The representative methods for estimating SY |X are the sliced inverse regression (SIR) introduced
in Li (1991) and the sliced average variance estimation (SAVE) introduced in Cook and Weisberg
(1991). Both methods are based on inverse moments: E(X|Y)), or var(X|Y). The term “inverse” comes
from the fact that we normally deal with E(Y |X) in the regression setting. A more comprehensive
review on sufficient dimension reduction is illustrated in Li (2018).

With increasing complexity, linear indices are not enough to capture core characteristics in the
relation between response and predictor. Hence, there is a need to extend the linear SDR to the
nonlinear SDR, which induces the following setup.

Y X | h1(X), . . . , hd(X), (1.2)

where hi is a function from the space in which X reside to R for i = 1, . . . , d. In this setting, the
SDR subspace is not clearly defined since the subspace is a concept for linear mapping. Regardless,
(1.2 implies that we only need d predictors, h1(X), . . . , hd(X), in describing the relation between Y and
X ∈ Rp. Wu (2008) and Yeh et al. (2008) extend the SIR to the kernel sliced inverse regression (KSIR),
which uses the kernel function to represent h1, . . . , hd. Specifically, they use the kernel function κ that
generates a reproducing kernel Hilbert space (RKHS),H , by which (1.2) can be reformulated as

Y X | 〈h1, κ(·, X)〉H , . . . , 〈hd, κ(·, X)〉H . (1.3)

Hence, we can conclude that the KSIR conducts linear SDR onH . In other respects, Fukumizu et al.
(2007) proposes the kernel canonical correlation analysis (KCCA). The goal is to find functions such
that sup f∈HX ,g∈HY

cor( f (X), g(Y)), where HX ,HY are RKHSs generated by κX , κY , respectively. Like
KSIR, the KCCA is a linear problem onHX ×HY in that it seeks to maximize the correlation.

Lee et al. (2013) illustrates a general theory of nonlinear sufficient dimension reduction by intro-
ducing central σ-field as below.

Y X | G,

where G is a sub σ-field of σ(X). Under mild conditions, there exists a unique minimal sub σ-
field GY |X called by the central σ-field. However, GY |X is an algebraic structure, which is difficult
to estimate directly. To estimate from data directly, Lee et al. (2013) provide the set of all GY |X-
measurable, square-integrable functions and calls it the central class denoted by SYX . To recover
SYX from data, the generalized sliced inverse regression (GSIR) and the generalized sliced average
variance estimation (GSAVE) are developed. In addition, Li and Song (2017) adapts the GSIR and
the GSAVE for functional data and develops f-GSIR and f-GSAVE then provides asymptotic theories
for nonlinear SDR methods. More recently, Song et al. (2023) proposed a nonlinear extension of the
principal fitted component, which is based on the likelihood of the predictors.

In this paper, we incorporate various nonlinear SDR methods into the framework of Lee et al.
(2013). We show that the target function spaces of KSIR and KCCA are included in the central class
SY |X and delineate the relationship between KCCA and GSIR. The result functions of KCCA and
GSIR are both in the range of some bounded operators.

The section of our paper is as follows. In Section 2, we introduce the kernel trick used in RKSH-
based methods. In Section 3, we deal with the framework of nonlinear SDR and theoretical results
of GSIR and GSAVE. Then, in Section 4, we review the KSIR in the case the response variable is
scalar. In Section 5, the KCCA for nonlinear SDR of multivariate response variable is considered.
Next, Section 6 deal with the nonlinear SDR for functional data: f-GSIR. Implementations of GSIR,
GSAVE, KSIR, and KCCA are provided in Section 7. Finally, the concluding remarks regarding the
application and the dimensionality are described in Section 8.
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2. Preliminary: Kernel trick

Kernel methods can be extended to nonlinear methods through the use of the so-called kernel trick.
The underlying key idea of this technique involves converting the original dataset into a higher-order
space composed of nonlinear functions of the original dataset. Linear methods are then applied in
this feature space. The most commonly used feature space is the reproducing kernel Hilbert space
(RKHS), which facilitates easier computation and theoretical justification through the representer
theorem. Aronszajn (1950) originally developed the concept of RKHS, which has been widely applied
in the probability space context. Schölkopf and Smola (2002) provide a concise introduction to the
main ideas of statistical learning theory, support vector machines, and kernel feature spaces, and
Berlinet and Thomas-Agnan (2011) provide a rigorous framework and related theories of the RKHS
within the context of probability space.

The RKHS can be defined in various ways using equivalent statements. One illustration is that the
RKHS is a Hilbert space with a reproducing kernel. It is a function that, given a space of functions,
allows for the evaluation of any function in that space at any point. For example, suppose that we
want to construct a RKHS over a set S in a metric space and κ(·, ·) is a positive definite kernel such
that κ : S × S → R. Then the RKHS over S with the reproducing kernel can be represented by the
completion of the following linear transformation of kernels

H =

 ∞∑
i=1

aiκ(·, si) :
∞∑

i=1

a2
i κ(·, si) < ∞, ai ∈ R, si ∈ S

 ,
where the inner product is,〈 ∞∑

i=1

aiκ(·, si),
∞∑
j=1

b jκ(·, t j)
〉
H

=

∞∑
i=1

∞∑
j=1

aib jκ(si, t j).

Then the term reproducing comes from a property that for any f (·) =
∑∞

i=1 aiκ(·, si) ∈ H , we have

f (s) = 〈 f , κ(·, s)〉H .

Now, suppose that we have a random sample {(X1, . . . , Xn)} in Rp. Then we map the original data
to the RKHS such that {(κ(·, X1), . . . , κ(·, Xn)} in

Hn =

 n∑
i=1

aiκ(·, Xi)

 .
By treating κ(·, Xi) is a random element in Hn, a linear method applied to κ(·, Xi) has a form of∑n

i=1 aiκ(·, Xi) which is a nonlinear method in terms of Xi.

3. Nonlinear sufficient dimension reduction

In this section, we introduce the framework for nonlinear SDR developed by Lee et al. (2013) and Li
and Song (2017). Let (Ω,F , P) be probability space and let (ΩX ,FX), (ΩY ,FY ), and (ΩXY ,FXY ) be
measurable spaces, where ΩXY = ΩX×ΩY andFXY = FX×FY . Let X,Y and (X,Y) be random elements
that take in ΩX ,ΩY and ΩXY , with distributions PX , PY and PXY . It is assumed that these distributions
are dominated by σ-finite measures. Let σ-fields generated by random elements as σ(X) = X−1(FX),
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σ(Y) = Y−1(FY ), and σ(X,Y) = (X,Y)−1(FXY ). Let PX|Y (·|·) : FX × ΩY → R be the conditional
distribution of X given Y .

Definition 1. A sub σ-field G of ΩX is an SDR σ-field for Y versus X if it satisfies

Y X | G. (3.1)

There are many SDR σ-field for Y versus X. Obviously, σ(X) satisfies (3.1), which means that
there is no reduction. For this reason, it is natural to seek the minimal SDR σ-field. In Lee et al.
(2013), it is shown that if the family of probability measures {PX|Y (·|y) : y ∈ ΩY } is dominated by a
finite σ-finite measure, then there is a unique sub σ-field G∗ of σ(X) such that:

1. Y X | G∗;

2. if G is a sub σ-field of σ(X) such that Y X | G, then G∗ ⊆ G.

Hence, it is natural to define the minimal SDR σ-field to G∗, and we call G∗ the central σ-field for Y
versus X, and denoit it by GY |X .

For further theoretical developments, a mild condition of square integrability is assumed. Let
L2(PXY ), L2(PX), and L2(PY ) be the spaces of functions defined on ΩXY , ΩX , and ΩY that are square-
integrable with respect to PXY , PX , and PY , respectively. In the context of SDR, a difference up to
constants is irrelevant. Therefore, there is no problem to assume that all functions of L2(PXY ), L2(PX),
and L2(PY ) have zero mean. From now on, let L′2(PX), L′2(PY ), and L′2(PXY ) denote centered space for
L2(PX), L2(PY ), and L2(PXY ), respectively. Since a σ-field is rather abstract concept, it is difficult to
estimate it directly. Instead, we utilize a class of functions measurable to a target σ-field. Given a sub
σ-filed G of σ(X,Y), let MG be the class of G-measurable functions in L′2(PXY ). For simplicity, we
abbreviateMσ(X) toMX . It is easily checked thatMG is a subspace of L′2(PXY ). Now, we introduce a
target class of functions in the nonlinear SDR.

Definition 2. Let G be an SDR σ-field and GY |X be the central σ-field. Then MG is called an SDR
class, andMGY |X is called the central class. MGY |X is denoted by SY |X .

The central class SY |X is the generalization of the central subspace in the classical linear SDR. In
the linear SDR, we model

Y X | βTX, (3.2)

where X and Y are random elements in Rp and R with square-integrability, and β is a matrix in Rp×d.
For β satisfying the condition (3.2), the corresponding SDR σ-field Gβ is σ(βTX), and the central σ-
field GY |X is ∩{Gβ : β satisfies the condition (3.2)}. With this setup, we can represent the central class
SY |X as { fβ : β ∈ SY |X}, where fβ : Rp → R by x 7→ βT x and SY |X is the central subspace of linear
SDR.

As linear SDR, we can define the concept of unbiasedness and exhaustiveness for the nonlinear
case.

Definition 3. A class of functions in L′2(PX) is unbiased for SY |X if its members are GY |X-measurable,
and exhaustive for SY |X if its members generate GY |X .

For the description of what classes of functions are unbiased, we introduce the operation 	. For
two subspaces S1 and S2 of a generic Hilbert spaceH , S1 	 S2 denote the subspace S1 ∩ S

⊥
2 . Now,

we specify an unbiased class of functions, which is called regression class.
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Proposition 1. (Theorem 2 of Lee et al. (2013)) If the family {PX|Y (·|y) : y ∈ ΩY } is dominated by a
σ-finite measure, then

L′2(PX) 	
[
L′2(PX) 	 L′2(PY )

]
⊆ SY |X . (3.3)

If some function f ∈ L′2(PX)	 L′2(PY ), then f (X) is square-integrable, and cov( f (X), g(Y)) = 0 for
any g ∈ L′2(PY ), which implies that E( f (X) |Y) = 0. It resembles the residual in a regression problem.
Hence, we call L′2(PX) 	 [L′2(PX) 	 L′2(PY )] regression class and denote it by CY |X .

Naturally, the next topic is what condition the regression class is exhaustive for the central class
SY |X . To this end, we introduce the notion of complete classes of functions in L2(PX).

Definition 4. Let G ⊆ σ(X) be a sub σ-field. The classMG is said to be complete if, for any g ∈ MG,
E(g(X) |Y) = 0 a.s. P implies that g(X) = 0 a.s. P.

The completeness is satisfied in many situations that are common settings in SDR. For the details,
see Lee et al. (2013). In classical statistics, a sufficient and complete statistic is the minimal sufficient
statistic. A similar logic can be applied to the central class.

Proposition 2. (Theorem 3 of Lee et al. (2013)) Suppose {PX|Y (·|y) : y ∈ ΩY } is dominated by a σ-
finite measure, and G is a sub σ-field of σ(X). If MG is a complete and sufficient dimension reduction
class, then

MG = CY |X = SY |X .

Thus, we can conclude that, with completeness, the regression class is identical to the central
class, and even without completeness, it is guaranteed that the regression class is at least included in
the central class. Moreover, it turns out that the regression class can be specified as the range of some
bounded linear operators. Through this representation, we can apply a simple spectral decomposition
method for estimating the regression class; the generalized sliced inverse regression.

3.1. Generalized SIR - GSIR

Before dealing with GSIR, let us introduce necessary concepts; modulo constants. For A and B, we
say that A ⊆ B modulo constants if, for each f ∈ A, there is c ∈ R such that f + c ∈ B, and A is a
dense subset of B modulo constants if (i) A ⊆ B modulo constants and (ii) for each f ∈ B, there is a
sequence { fn} ⊆ A and a sequence of constants {cn} ⊆ R such that { fn + cn} ⊆ A and fn + cn → f in the
topology for B. LetHX andHY be Hilbert spaces of functions on ΩX and ΩY satisfying the condition:

1. HX andHY are dense subsets of L′2(PX) and L′2(PY ) modulo constants, respectively.

2. There are constants C1 > 0 and C2 > 0 such that var( f (X)) ≤ C1‖ f ‖2HX
and var(g(Y)) ≤ C2‖g‖2HY

for any f ∈ HX and g ∈ HY .

In fact, condition 2 has a relationship with the boundedness of bilinear operators. Hence, we assign
symbols to the class of bounded operators. For two generic Hilbert spacesH1 andH2, let B(H1,H2)
denote the class of all bounded linear operators fromH1 toH2, and let B(H1) abbreviate B(H1,H1).
We denote the range of a linear operator A by ran(A), the kernel of A by ker(A), and the closure of
ran(A) by ran(A). Since the bilinear operator c : HX ×HX → R defined by f , g 7→ cov( f (X), g(X)) is
bounded, there is the unique operator MXX ∈ B(HX) such that 〈 f ,MXXg〉HX = cov( f (X), g(X)). Simi-
larly, there is the unique operator MYY ∈ B(HY ) such that 〈 f ,MYYg〉HY = cov( f (Y), g(Y)). From now
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on, let GX and GY be ran(MXX) and ran(MYY ), respectively. In considering dependency, a difference
up to constants can be negligible, and if f ∈ ker(MXX), then var( f (X)) = 0, which means that f is a
constant function a.s. Hence, we restrict considered spaces to GX and GY . In fact, it is easily shown
that GX = L′2(PX) and GY = L′2(PY ). Specifically, f ∈ L′2(PX)⊥ implies that cov( f (X), g(X)) = 0
for any g ∈ L′2(PX), which is equivalent to var( f (X)) = 0. Moreover, var( f (X)) = 0 is equiva-
lent to f ∈ ker(MXX) = G⊥X . Thus, it follows that GX = L′2(PX). Similarly, we can derive that
GY = L′2(PY ). Since L′2(PX) = GX ⊆ HX and L′2(PY ) = GY ⊆ HY , we can use inner products
of HX and HY for all functions in L2(PX) and L2(PY ). On the other hand, there is a unique cross-
covariance operator MYX : HX → HY such that cov( f (Y), g(X)) = 〈 f ,MYXg〉HY for any f ∈ HY and
g ∈ HX , and it is represented as MYX = M1/2

YY RYX M1/2
XX , where RYX is called the correlation operator

with properties of ‖RYX‖op ≤ 1 and ran(RYX) = ran(MYY ) (Baker, 1973). By Li (2018), we have
ran(MYX) ⊆ ran(MYY ) = L′2(PY ). Hence, we can define domain-restricted covariance operators.

Definition 5. We define the restricted covariance operators ΣXX : L′2(PX)→ L′2(PX), ΣYY : L′2(PY )→
L′2(PY ), and ΣYX : L′2(PY )→ L′2(PX) to be identical to MXX , MYY , and MYX on the restricted space.

〈 f1,ΣXX f2〉HX = 〈 f1,MXX f2〉HX , 〈g1,ΣYYg2〉HY = 〈g1,MYYg2〉HY , 〈g1,ΣYX f1〉HY = 〈g1,MYX f1〉HY .

By the definitions of ΣXX and ΣYY , it is easily shown that ker(ΣXX) = {0} and ker(ΣYY ) = {0},
which means that both operators are invertible. Using the inverse operators, we define the conditional
expectation operator.

Definition 6. We call the operator Σ−1
YYΣYX : L′2(PX) → L′2(PY ) the conditional expectation operator,

and denote it by EX|Y .

The reason why this operator is called the conditional expectation operator is as follows.

1. For any f ∈ L′2(PX), (EX|Y f )(Y) = E( f (X)|Y).

2. For any g ∈ L′2(PY ), (E∗X|Yg)(X) = E(g(Y)|X).

That is because, for any g ∈ L′2(PY ),

cov
(
(EX|Y f )(Y), g(Y)

)
= 〈EX|Y f ,ΣYYg〉HY = 〈ΣYX f , g〉HY = cov ( f (X), g(Y)) ,

which means that (EX|Y f )(Y) = E( f (X) |Y) + constant. Since EX|Y f ∈ L′2(PY ), the constant should be
equal to −E(E( f (X) |Y )) = −E( f (X)) = 0. Thus, it follows that (EX|Y f )(Y) = E( f (X) |Y). With this
fact, we can easily induce that (E∗X|Yg)(X) = E(g(Y) | X).

Proposition 3. (Corollary 1 of Lee et al. (2013)) For any f , g ∈ L′2(PX),

〈g, E∗X|Y EX|Y f 〉L2(PY ) = cov
[
E(g(X) | Y), E( f (X) | Y)

]
. (3.4)

Furthermore, ‖E∗X|Y EX|Y‖op ≤ 1, thus E∗X|Y EX|Y ∈ B(L2(PY )).

Proof: (3.4) can be proved easily.

〈g, E∗X|Y EX|Y f 〉L2(PY ) = 〈EX|Yg, EX|Y f 〉L2(PY ) = cov
[
E(g(X) | Y), E( f (X) | Y)

]
.

The right-hand side of (3.4) is greater than equal to var(E(g(X) |Y))1/2 var(E( f (X) |Y))1/2 by Cauchy-
Schwarz inequality. In addition, it is greater than equal to var(g(X))1/2var( f (X))1/2 = ‖g‖L′2(PY )‖ f ‖L′2(PY ).
Hence, it follows that 〈g, E∗X|Y EX|Y f 〉L′2(PY ) ≤ ‖g‖L′2(PY )‖ f ‖L′2(PY ), which means that ‖E∗X|Y EX|Y‖op ≤ 1. 2
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In linear SDR, cov[E(X |Y)] has a crucial role. Likewise, the operator E∗X|Y EX|Y has a key relationship
with the central class SY |X .

Proposition 4. (Theorem 5 of Lee et al. (2013)) If SY |X is complete, then

ran
(
E∗X|Y EX|Y

)
= SY |X .

Proof: f ∈ C⊥ if and only if f ∈ L′2(PX) and E( f (X) |Y) = 0, which is equivalent to f ∈ ker(EX|Y ).
It follows that ker(EX|Y )) = C⊥Y |X . Since ker(E∗X|Y EX|Y ) = ker(EX|Y ), we have ran(E∗X|Y EX|Y ) = CY |X .
Considering the completeness of SY |X , ran(E∗X|Y EX|Y ) = SY |X . 2

3.2. Generalized SAVE - GSAVE

Without completeness, the GSIR is guaranteed to be unbiased. Lee et al. (2013) proposed the GSAVE
that it can recover functions beyond the regression class. In the GSAVE, the working space is not
restricted to centered space. Thus, we work on L2(PX), L2(PX). Define the noncentered conditional
mean operator E′X|Y : L2(PX)→ L2(PY ) by, for any f ∈ L2(PX), g ∈ L2(PY ),

〈g, E′X|Y f 〉L′2(PX ) = E (g(Y) f (X)) . (3.5)

From this definition, it is easily shown that (E′X|Y f )(Y) = E( f (X)|Y). Additionally, we introduce a new
type of conditional variance operator.

Definition 7. For each y ∈ ΩY , the bilinear form

L2(PX) × L2(PX)→ R, ( f , g) 7→
[
E′X|Y ( f g) − E′X|Y f E′X|Yg

]
(y)

uniquely defines an operator VX|Y (y) ∈ B(L2(PX)) via the Riesz representation. We call the random
operator

VX|Y : ΩY → B (L2(PY )) , y 7→ VX|Y (y)

the heteroscedastic conditional variance operator given Y.

In summary, there exists uniquely as operator VX|Y (Y) such that cov( f (X), g(X) |Y) = 〈 f ,VX|Y (Y)g〉L2(PX ).
Let the operator S be E(V − VX|Y )2 : L2(PX)→ L2(PX), where V : L2(PX)→ L2(PX) is the (uncondi-
tional) covariance operator as

〈 f ,Vg〉L2(PX ) = cov ( f (X), g(X)) .

Now, the reason the GSAVE works is provided.

Proposition 5. (Theorem 7 of Lee et al. (2013)) Suppose var
(
f (X) | GY |X

)
is nonrandom for any

f ∈ S⊥Y |X . Then ranS ⊆ SY |X .

The estimator derived from ranS is called generalized SAVE or GSAVE. The notable result is that
GSAVE can cover functions outside the regression class.

Proposition 6. (Theorem 8 of Lee et al. (2013)) Suppose var
(
f (X) | GY |X

)
is nonrandom for any

f ∈ S⊥Y |X , then CY |X ⊆ ranS .

Combining given propositions, the following relation is satisfied:

CY |X ⊆ ranS ⊆ SY |X .
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4. Nonlinear SDR with a scalar response

In this section, we illustrate the extension of sliced inverse regression with the kernel trick introduced
in Section 2. The kernel trick is applied to the predictor space, then use the relation between Y and
κ(·, X) ∈ MX .

4.1. Kernel sliced inverse regression

Let ΩY ⊆ R and ΩX ⊆ Rp. The kernel sliced inverse regression (KSIR) applies the reproducing kernel
Hilbert space (RKHS) to SDR method. Let HX be a RKHS generated by a positive kernel κX . The
KSIR assumes the population model:

Y X | h1(X), . . . , hd(X),

where {h1, . . . , hd} ⊂ HX . Thus, the goal of KSIR is to estimate {h1, . . . , hd}, which is called e.d.r.
directions.

Definition 8. If Y X | h1(X), . . . , hd(X), then {h1, . . . , hd} is called the feature. e.d.r. directions, and
the subspaceH = span(h1, . . . , hd) is called the feature e.d.r. subspace.

Note that, by the reproducing property of kernel function hi(X) = 〈hi, κ(·, X)〉HX , the model is repre-
sented as:

Y X | 〈h1, κ(·, X)〉HX , . . . , 〈hd, κ(·, X)〉HX ,

which implies that KSIR is an extension of linear SDR in that the inner product in Rp is changed to
that ofHX . For further discussion, we assume that E(κX(X, X)) < ∞ to be followed:

1. There is a unique E(κX(·, X)) ∈ HX such that, for any f ∈ HX , E( f (X)) = 〈 f , E(κX(·, X))〉H .

2. There is a unique bounded linear operator ΣXX ∈ B(HX) such that cov( f (X), g(X)) = 〈 f ,ΣXXg〉HX

for any f , g ∈ HX .

For the success of KSIR, there is a sufficiency condition proposed by Yeh et al. (2008), and this
condition is also just an extension of the linear conditional mean assumption in linear SDR.

Definition 9. For {h1, . . . , hp} ⊂ HX , it is said to satisfy the linear design condition, if, for any f ∈
HX ,

E ( f (X) | h1(X), . . . , hd(X)) = c0 + c1h1(X) + · · · + cdhd(X),

for some constants c1, c1, . . . , cp.

With this condition, the unbiasedness that is different from ours can be proved in the population level.

Proposition 7. (Theorem 1 of Yeh et al. (2008)) Assume the existence of a feature e.d.r. subspace
span(h1, . . . , hd), and the linear design condition holds. Then the central inverse regression vector falls
into the subspace span(ΣXXh1, . . . ,ΣXXhd); E(κX(·, X) |Y) − E(κX(·, X)) ∈ span(ΣXXh1, . . . ,ΣXXhd).

In a real application, it is difficult to deal with E(κX(·, X) |Y) directly. Instead, the discretized version
of Y, E(κX(·, X) |Y ∈ J j), is adopted, where J1, . . . , Jh is a partition of ΩY with P(Y ∈ J j) > 0
for all j = 1, . . . , h. It can be shown that E(κX(·, X) | Ỹ) − E(κX(·, X)) ∈ span(ΣXXh1, . . . ,ΣXXhd),
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where Ỹ =
∑h

j=1 jI(Y ∈ J j). It follows that the closure of the range of the covariance operator for
E(κX(·, X) | Ỹ) is included in span(ΣXXh1, . . . ,ΣXXhd). Now we can construct the covariance operator
of E(KX(·, X) | Ỹ) as

ΣE(KX (·,X) | Ỹ) =

h∑
j=1

P(Y ∈ J j)
[
E

(
KX(·, X) | Y ∈ J j

)
− E (κX(·, X))

]
⊗

[
E

(
KX(·, X) | Y ∈ J j

)
− E (κX(·, X))

]
.

Therefore, it is necessary to solve the eigenvalue problem, where kth eigenvector is obtained by

max
a∈HX

〈a , ΣE(KX (·,X) | Ỹ) a〉HX

subject to 〈a,ΣXXa〉HX = 1, 〈a,ΣXXa j〉HX = 0 for j = 1, . . . , k − 1. Let us include KSiR into the
framework proposed by Lee et al. (2013). Let span(h1, . . . , hd) be the central subspace SY |X . Then,
it follows that the central σ-field GY |X is σ(h1(X), . . . , hd(X)). Hence the central subspace which
considers only linear combinations is the subset of the central class SY |X . In other words, we have
S Y |X ⊆ SY |X . Since any measurable function g, Sg(Y)|X ⊆ SY |X , hence, it follows that Sg(Y)|X ⊆ SY |X .
Therefore, it can be concluded that the KSIR is the unbiased method at the population level, however,
it cannot be exhaustive for SY |X .

5. Nonlinear SDR in Euclidean space

When the response variable is not a real random variable, slicing the response becomes inapplicable.
Moreover, as the data structure grows in complexity, there is a need for generalized theories applicable
to Hilbert space random elements. GSIR and GSAVE, introduced in Section 3, represent nonlinear
SDR methods within a generic Hilbert space. In this section, we introduce another type of nonlinear
method, drawing on the concept of canonical correlation analysis. We will briefly review Kernel
Canonical Correlation Analysis (KCCA), as detailed in Fukumizu et al. (2007).

LetHX andHY be the reproducing kernel Hilbert spaces generated by positive definite kernels κX

and κY . For the existence of mean element and covariance operator, it is assumed that E(κX(X, X)) < ∞
and E(κY (Y,Y)) < ∞. Then, we have, E( f 2(X)) = E(〈 f , κX(·, X)〉2

HX
) ≤ ‖ f ‖2

HX
E(κX(X, X)) < ∞ for any

f ∈ HX . Similarly, we can show that for any g ∈ HY , E(g2(Y)) is also finite. More explicitly, there
exist uniquely covariance operators MXX , MYY , and MXY such that cov( f (X), g(X)) = 〈 f ,MXXg〉HX ,
cov( f (Y), g(Y)) = 〈 f ,MYYg〉HY , and cov( f (X), g(Y)) = 〈 f ,MXYg〉HX . For the connecting zero-mean
and square-integrable space L2(PX) and L2(PY ),HX andHY are reset to ranMXX and ranMYY . Hence,
it follows that HX ⊆ L2(PX) and HY ⊆ L2(PY ), which implies that ΣXX ,ΣYY ,ΣXY on centered spaces
are corresponding to MXX ,MYY ,MXY on original spaces. With this setup, KCCA seeks to solve the
following problem:

max
f∈HX ,g∈HY , f,0,g,0

cov( f (X), g(Y))
var( f (x))1/2var(g(Y))1/2 . (5.1)

In the population level, (5.1) is reformulated by RKHS form as

max
f∈HX ,g∈HY , f,0,g,0

〈 f ,ΣXYg〉HX

〈 f ,ΣXX f 〉1/2
HX
〈g,ΣYYg〉1/2

HY

, (5.2)
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or equivalently,

sup
f∈HX ,g∈HY

〈 f ,ΣXYg〉HX subject to 〈 f ,ΣXX f 〉HX = 1, 〈g,ΣYYg〉HY = 1. (5.3)

As with classical CCA, the solution of 5.3 is ven by the eigenfunctions corresponding to the largest
eigenvalue of the following generalized eigenvalue problem:

ΣYX f = λ1ΣYYg, ΣXYg = λ1ΣXX f . (5.4)

As mentioned, ΣXY can be represented as ΣXY = Σ
1/2
XX VXYΣ

1/2
YY , where VXY is the correlation operator

with its norm being less than equal to 1. Let φ, ψ be the unit eigenfunctions of VXY corresponding to
the largest singular value; that is,

〈φ,VXYψ〉 = max
‖ f ‖HX =1,‖g‖HY =1

〈 f ,VXYg〉HX .

From the equation 5.4, it is easy to see that the solution of the KCCA is given the inverse images

f = Σ
−1/2
XX φ, g = Σ

−1/2
YY ψ.

At the sample level, we briefly introduce the estimating procedure. At first, let φn, ψn be the unit
eigenfunctions corresponding to the largest singular value of the operator

Vn,XY =
(
Σn,XX + εnI

)− 1
2 Σn,XY

(
Σn,YY + εnI

)− 1
2 .

The empirical estimators fn and gn of KCCA are

fn =
(
Σn,XX + εnI

)− 1
2 φn, gn =

(
Σn,YY + εnI

)− 1
2 ψn.

In the practical analysis, when the inverse of an operator is treated, εnI is added to make the operator
nonsingular. Moreover, this term acts like a regularize that a result function can be smooth. The
authors of Fukumizu et al. (2007) shows convergence of fn, gn under the condition for the speed of εn.
The KCCA can be interpreted in terms of conditional expectation operator EX|Y = Σ−1

YYΣYX . In fact,
the solution of KCCA f , g has the following relationship.

sup
‖v‖=‖u‖=1

〈u,VXYu〉HX = 〈φ,VXYψ〉HX = 〈Σ
1/2
XX f ,VXYΣ

1/2
YY g〉HX = 〈 f ,Σ−1

XXΣXYg〉HX = 〈 f , E∗X|Yg〉HX .

It follows that f , g is the solution of the following problem:

max〈EX|Yu, v〉HY subject to 〈u,ΣXXu〉HX = 〈v,ΣYYv〉HY = 1.

Since v = EX|Yv, 〈u,ΣXXu〉HX = 〈u, u〉L′2(PX ), and 〈v,ΣYYv〉HY = 〈v, v〉L′2(PY ), the above problem is
reformulated as

max〈u, E∗X|Y EX|Yv〉HY subject to 〈u, u〉L′2(PX ) = 〈v, v〉L′2(PY ) = 1.

To achieve the maximization, u must be in ran(E∗X|Y EX|Y ). Consequently, f ∈ ran(E∗X|Y EX|Y ) ⊆ SY |X .
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6. Nonlinear SDR for functional data

This section covers the nonlinear SDR in the case that both Y and X are random functions. We
introduce the functional GSIR (f-GSIR) developed by Li and Song (2017) briefly. Let TX and TY be
subsets in Rk1 and Rk2 . Let ΩX be a Hilbert space of functions from TX to Rp and ΩY be a Hilbert
space of functions from TY to Rq. Note that ΩX and ΩY are both Hilbert spaces of functions. Since
a similar procedure is applied to the Y case, we describe only the X case. For a f ∈ ΩX , we can
represent f as a vector of functions: f = ( f1, . . . , fp), where fi is a function from TX to R. For
simplicity, we assume that fi is a random function in H0 which is a Hilbert space of function from
TX to R for all i = 1, . . . , p. Let 〈·, ·〉H0 is a inner product of H0. We define H as p Cartesian
product space of H0, that is, H = H0 × · · · × H0. For f , g ∈ H , the inner product of H is
defined as 〈 f , g〉H =

∑p
j=1〈 f j, g j〉H0 . Note thatH0 can be constructed by RKHS with kernel function

κTX : TX × TX → R, hence, we call ΩX the first level RKHS. Naturally, we call HX the second level
RKHS. Li and Song (2017) constrains the kernel function κX to be connected with the inner product
ofH .

Definition 10. We say that a positive definite kernel κ : H ×H → R is induced by 〈·, ·〉H if there is a
function ρ : R3 → R+ such that, for any φ, ψ ∈ H ,

κ(φ, ψ) = ρ(〈φ, φ〉H , 〈φ, ψ〉H , 〈ψ, ψ〉H ).

We assume that κX is induced by 〈·, ·〉H and assume that HX . In the same manner, κY and HY can be
constructed. We additionally assume that

1. HX andHY are dense subsets of L2(PX) and L2(PY ) modulo constants, respectively.

2. There are constants C1 > 0 and C2 > 0 such that var( f (X)) ≤ C1‖ f ‖2HX
and var(g(Y)) ≤ C2‖g‖2HY

for any f ∈ HX and g ∈ HY .

Then, there exist a unique element in HX , E(κX(·, X)), such that E( f (X)) = 〈 f , E(κX(·, X))〉HX for
any f ∈ HX and a unique element HY , E(κY (·,Y)), such that E(g(Y)) = 〈g, E(κY (·,Y))〉HY for any
g ∈ HY . Furthermore, there exist uniquely covariance operators MXX , MYY , and MXY such that
cov( f (X), g(X)) = 〈 f ,MXXg〉HX , cov( f (Y), g(Y)) = 〈 f ,MYYg〉HY , and cov( f (X), g(Y)) = 〈 f ,MXYg〉HX .
Let H0

X = span{κX(·, X) − E(κX(·, X)) : X ∈ HX}, and H0
Y = span{κY (·,Y) − E(κY (·,Y)) : Y ∈ HT }.

Then, it can be shown that ran(MXX) = H0
X , and ran(MYY ) = H0

Y . We denote the Moore-Penrose
inverse of some operator A by A†. We call M†

XX MXY the regression operator and denote it by RYX . The
next proposition is a theoretical base of the functional GSIR (f-GSIR).

Proposition 8. (Theorem 1 of Li and Song (2017)) Under some mild conditions, we have ran(R∗YX) ⊆
cl(MXXSY |X), where cl(·) means the closure. Furthermore, if SY |X is complete, then ran(R∗YX) =

cl(MXXSY |X).

Since ran(R∗YX) = ran(R∗YXARXY ) for any invertible operator A : H0
Y → H

0
Y , Li and Song (2017) rec-

ommends choosing A to MYY to avoid inversion so that R∗YXARXY = MXY MYX . We call the following
entire procedure f-GSIR:

Let f1, . . . , fd be solution to the following sequential eigenvalue problem; for each k = 1, . . . , d,

max
f∈H0

X

〈 f ,M†

XX MXY MYX M†

XX f 〉HX
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subject to 〈 f , f 〉HX = 1, 〈 f , fi〉HX = 0 for i = 1, . . . , k − 1. Corollary 1 of Li and Song (2017) shows
that f(X), . . . , fd(X) generate a subspace of SY |X , if it is complete, then generate SY |X itself. Note that
f-GSIR is an extension of GSIR in that it does not restrict space to L′2(PX), or H0

X and it applies the
RKHS to the construction of ΩX to overcome the non-dense observation problem for functional data.

7. Implementation

7.1. Coordinate representation

Let Hi be a finite Hilbert space, Bi = {bi
1, . . . , b

i
mi
} be Hi’s basis system, and GBi be a gram matrix

with (GBi ) jk = 〈bi
j, b

i
k〉Hi for i = 1, 2, 3. We first of the coordinate representation of an element. If f =∑

j f jbi
j ∈ Hi, then the coordinate representation of f , [ f ]Bi = [ f1, . . . , fmi ]

T. For A : H1 → H2, we
define the coordinate representation of A, B2 [A]B1 = [[Ab1

1]B2 , . . . , [Ab1
m1

]B2 ]. It follows that [A f ]B2 =

B2 [A]B1 [ f ]B1 . Let C be an operator H2 → H3. It can be shown that the coordinate representation AC
is B3 [CA]B1 = B3 [C]B2 B2 [A]B1 .

Furthermore, we can calculate the inner product as 〈 f , g〉H1 =
∑

i
∑

j fig j〈b1
i , b

1
j〉H1 = [ f ]T

B1
GB1 [g]B1 .

The tensor product can also be represented by the coordinated representation. If f ∈ H1 and g ∈ H2,
then, [

(g ⊗ f )b1
i

]
B2

= 〈 f , b1
i 〉H1 [g]B2 = [g]B2 [ f ]T

B1
GB1 ei,

where ei is the ith standard basis vector of Rm1 . From this, we have

B2

[
g ⊗ f

]
B1

=

[[
(g ⊗ f )b1

1

]
B2
. . .

[
(g ⊗ f )b1

m1

]
B2

]
= [g]B2 [ f ]T

B1
GB1

(
e1 . . . em1

)
= [g]B2 [ f ]T

B1
GB1 .

7.2. RKHS by coordinate representation

In this subsection, we introduce the implementation of RKHS, using the coordinate representation. Let
X1, . . . , Xn be an i.i.d. sample of X. Let κX be a positive definite kernel and let HX be span{κX(·, Xi) :
i = 1, . . . , n}. We estimate covariance operators at the sample level, by replacing E by the empirical
En.

Σ̂XX = En [κX(·, X) − Enκ(·, X)] ⊗ [κX(·, X) − Enκ(·, X)] .

Hence, the subspace ran(Σ̂XX) is spanned by

BX = {κX(·, Xi) − EnκX(·, X) : i = 1, . . . , n} =
{
b(X)

1 , . . . , b(X)
n

}
.

First of all, the gram matrix GBX such that (GBX )i j = 〈b(X)
i , b(X)

j 〉HX is considered.

〈b(X)
i , b(X)

j 〉HX = 〈κX(·, Xi) − n−1
n∑

k=1

κ(·, Xk), κX(·, X j) − n−1
n∑
`=1

κX(·, X`)〉HX

= κX

(
Xi, X j

)
− n−1

n∑
`=1

κX (Xi, X`) − n−1
n∑

k=1

κX

(
X j, Xk

)
+ n−2

n∑
k=1

n∑
`=1

κX (Xk, X`) .
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Let KX denote the n×n matrix whose (i, j)th entry is κX(Xi, X j), and let Q denote the projection matrix
In − n−11n1T

n. Then it is easily shown that GBX = QKXQ. Now it is ready to represent Σ̂XX by the
coordinate representation.

[
Σ̂XXb(X)

i

]
BX

= n−1

 n∑
i=1

b(X)
k ⊗ b(X)

k

 b(X)
i


= n−1

 n∑
k=1

[
b(X)

k

]
BX

[
b(X)

k

]T

BX
GBX

 [b(X)
i

]
BX

= n−1

 n∑
k=1

ekeT
k

 QKXQei = n−1QKXQei.

Hence, it follows that

BX

[
Σ̂XX

]
BX

=

[[
Σ̂XXb(X)

1

]
BX
. . .

[
Σ̂XXb(X)

n

]
BX

]
= n−1QKXQ (e1 . . . en) = n−1QKXQ = n−1GBX .

The similar development can be carried out on Y . That is,HY is the space spanned by

BY = {κY (·,Y) − EnκY (·,Y) : i = 1, . . . n} =
{
b(Y)

i : i = 1, . . . , n
}
.

The cododinate representation of Σ̂YY is

BY

[
Σ̂YY

]
BY

= n−1QKY Q = n−1GBY .

In similar way, we derive the coordinate representation of Σ̂XY and Σ̂YX as

BX

[
Σ̂XY

]
BY

= n−1GBY , BY

[
Σ̂YX

]
BX

= n−1GBX .

From now on, if the domain and range of an operator are explicit, we abbreviate B1 [A]B2 to just [A].

7.3. GSIR

In the context of GSIR, the inner product in L′2(PX) is used, which should also be represented by
coordinate form. Since 〈 f , g〉L′2(PX ) = 〈 f ,ΣXXg〉HX , its coordinate representation is [ f ]TGBX [ΣXX][g] =

n−1[ f ]TG2
BX

[g]. The conditional expectation operator EX|Y is Σ−1
YYΣYX . The problem is that, although

ΣYY is invertible analytically, its coordinate representation would be singular. To avoid singular issue,
it is often use ([A] + εnIn)−1 rather than [A]−1 directly. Hence, let the coordinate form of EX|Y be[

EX|Y
]

=
[
Σ̂YY

]−1 [
Σ̂YX

]
=

(
GBY + εnIn

)−1 GBX .

Consequently, it follows that

〈 f , Ê∗X|Y ÊX|Y f 〉L′2(PX ) = 〈ÊX|Y f , ÊX|Y f 〉L′2(PY )

= n−1[ f ]T
[
ÊX|Y

]T
G2

BY

[
ÊX|Y

]
[ f ]

= n−1[ f ]TGBX

(
GBY + εnIn

)−1 G2
BY

(
GBY + εnIn

)−1 GBX [ f ].
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The eigenvalue problem that GSIR solve is as follows

max
v∈Rn

n−1vTGBX

(
GBY + εnIn

)−1 G2
BY

(
GBY + εnIn

)−1 GBX v, subject to 〈v, v〉L′2(PX ) = n−1vTG2
BX

v = 1.

Transforming v to u = n−1/2GBX v, the above problem is changed to

max
u∈Rn

uT (GBX + εnIn
)−1 GBX

(
GBY + εnIn

)−1 G2
BY

(
GBY + εnIn

)−1 GBX

(
GBX + εnIn

)−1 u,

subject to ‖u‖Rn = 1. Let the first d eigenvectors of this problem be {u1, . . . , ud}, which means that
the ith solution of original problem is vi = n1/2(GBX + εnIn)−1ui for i = 1, . . . , d. From this result, ith

sufficient predictor is h(i)(x) =
∑n

j=1 vi j b(X)
i (x) for i = 1, . . . , d.

7.4. KSIR

In the implementation of KSIR, ΣE(κX (·,X) | Ỹ) is used and it has a explicit analytical form.

ΣE(KX (·,X) | Ỹ) =

h∑
j=1

P
(
Y ∈ J j

)
ΣE(KX (·,X) |Y∈J j)

=

h∑
j=1

P
(
Y ∈ J j

) [
E

(
KX(·, X) − E(κX(·, X)) | Y ∈ J j

)]
⊗

[
E

(
KX(·, X) − E (κX(·, X)) | Y ∈ J j

)]
.

To implement the KSIR, P(Y ∈ J j), E(κX(·, X)), and E(KX(·, X) − E(κX(·, X)) |Y ∈ J j) should be
estimated, and their estimates are as follows:

• P̂(Y ∈ J j) = En(I(Y ∈ J j)) = n−1 ∑n
i=1 I(Yi ∈ J j) = n−1n j = π j

• Ê(κX(·, X)) = En(κX(·, X)) = n−1 ∑n
i=1 κX(·, Xi).

• Ê(KX(·, X) − E(κX(·, X)) |Y ∈ J j) = (n j)−1 ∑
i:yi∈J j

(κX(·, Xi) − E(κX(·, X)))

Thus, Σ̂E(KX (·,X) |Y∈J j) = (n j)−2(
∑

k:yk∈J j
b(X)

k )⊗ (
∑
`:y`∈J j

b(X)
`

) = (n j)−2 ∑
k:yk∈J j

∑
`:y`∈J j

b(X)
k ⊗ b(X)

`
. Hence,

the coordinate representation of it is[
Σ̂E(KX (·,X) |Y∈J j)

]
=

(
n j

)−2 ∑
k:yk∈J j

∑
`:y`∈J j

ekeT
`GBX = (n j)−2

(∑
k:yk∈J j

ek

) (∑
k:yk∈J j

ek

)T
GBX ,

from which, it follows that[
Σ̂E(KX (·,X) | Ỹ)

]
=

(∑h
j=1π j

(
n j

)−2 (∑
k:yk∈J j

ek

) (∑
k:yk∈J j

ek

)T
)

GBX .

Let A denote (
∑h

j=1π j(n j)−2(
∑

k:yk∈J j
ek)(

∑
k:yk∈J j

ek)T). Note that A is symmetric.
The eigenvalue problem of the KSIR is maxv∈HX 〈v,ΣE(κX (·,X)|Ỹ)v〉HX subject to 〈v,ΣXXv〉HX = 1.

The coordinate form of this problem is

max
[v]∈Rn

[v]TGBX AGBX [v], subjet to n−1[v]TG2
BX

[v] = 1.
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Let u = n−1/2GBX [v]. Then, the above problem is transformed to the below problem:

max
u∈Rn

uT (GBX + εnIn
)−1 GBX AGBX

(
GBX + εnIn

)−1 u, subjet to ‖u‖Rn = 1.

Let the first d eigenvector of this problem be {u1, . . . , ud}, from which we can derive that the ith

solution of original problem is vi = n1/2(GBX + εnIn)−1ui. Therefore, ith sufficient predictor is hi(x) =∑n
j=1 vi j b(X)

j (x).

7.5. KCCA

(5.3) says that the KCCA solves the generalized singular value problem at the population level.

sup
f∈HX ,g∈HY

〈 f ,ΣXYg〉HX subject to 〈 f ,ΣXX f 〉HX = 1, 〈g,ΣYYg〉HY = 1.

If we represent this problem in coordinate form, we have

sup
f ,g∈Rn

f TGBX [ΣXY ] g subject to f TGBX [ΣXX] f = gGBY [ΣYY ] g = 1. (7.1)

By representing covariance operators in form of gram matrix, we have

sup
f ,g∈Rn

n−1 f TGBX GBY g subject to n−1 f TG2
BX

f = n−1gG2
BY

g = 1.

Let φ = n−1/2GBX f and ψ = n−1/2GBY g. Then, the above statement is reformulated as

sup
f ,g∈Rn

φT (GBX + εnIn
)−1 GBX GBY

(
GBY + εnIn

)−1 ψ subject to ‖φ‖Rn = ‖ψ‖Rn = 1. (7.2)

Let φ, ψ ∈ Rn be eigenvectors corresponding to the first singular value of (7.2). Then, the solution of
(7.1), f , g ∈ Rn, are n1/2(GBX + εnIn)−1φ and n1/2(GBY + εnIn)−1ψ, respectively. It means that estimates
of KCCA are represented by f̂ (x) =

∑n
j=1 f j b(X)

j (x) and ĝ(y) =
∑n

j=1 g j b(Y)
j (y).

8. Concluding remark

We endeavor to integrate a range of nonlinear SDR methods within the framework established by Lee
et al. (2013) and Li and Song (2017). In the practical implementation of nonlinear SDR methods, we
recommend using KCCA, GSIR, and GSAVE in general. This is because KSIR requires the response
variable to be a scalar value, and other methods are known to have better performance than KSIR.
Both KCCA and GSIR demonstrate similar performance, but GSAVE provides slightly different in-
formation. More precisely, KCCA and GSIR rely on E[ f (X)|Y] while GSAVE extracts information
from var( f (X)|Y). Thus the performance depends on the structure of data. See Lee et al. (2013) for a
numerical comparison of the methods. However, it is not easy to determine which method is superior
based solely on the dataset. Therefore, we suggest trying different methods and choosing the one that
works best under an appropriate criterion.

One aspect we have not addressed is the dimensionality of the reduced feature space. The target
of nonlinear SDR is the central class SY |X . On the other hand, dimensionality is defined for linear
subspaces as a geometric structure, leading to confusion in determining an appropriate dimension.
For instance, the space spanned by the { f1(x), f2(x)} where f1(x) = x, f2(x) = x3 is a two-dimensional
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space. But they provide the same sigma-algebra, σ( f1(X)) = σ( f2(X)) = σ( f1(X), f2(X)). This high-
lights the subtle differences encountered when dealing with nonlinear methods, making the selection
of dimensionality a distinctly different problem from that in linear methods. Practically, we assume
a finite rank for the target operator defined in the RKHS to extract the dimension. For example, Li
and Song (2017) proposed a BIC-based criterion for selecting the dimension d. Nevertheless, more
theoretical analysis is necessary to understand the dimensionality of the central class.
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