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Abstract
In high-dimensional data analysis, sufficient dimension reduction (SDR) has been considered as an attractive

tool for reducing the dimensionality of predictors while preserving regression information. The principal support
vector machine (PSVM) (Li et al., 2011) offers a unified approach for both linear and nonlinear SDR. This article
comprehensively explores a variety of SDR methods based on the PSVM, which we call principal machines
(PM) for SDR. The PM achieves SDR by solving a sequence of convex optimizations akin to popular supervised
learning methods, such as the support vector machine, logistic regression, and quantile regression, to name a few.
This makes the PM straightforward to handle and extend in both theoretical and computational aspects, as we
will see throughout this article.

Keywords: sufficient dimension reduction, principal support vector machine, principal machine,
M-estimation, convex optimization

1. Introduction

Statistics is essentially about how to reduce the dimension of data without loss of parameter infor-
mation of interest. There are tons of statistical methods for dimension reduction, and they are broadly
categorized into two types: Feature selection and feature extraction. Feature selection, often referred
to as variable selection tries to identify a subset of variables to achieve the dimension reduction. Since
the seminal LASSO (Tibshirani, 1996) was proposed, penalization becomes a canonical approach for
feature selection in supervised learning problems. Popular examples of penalized variable selection
methods includes but not limited to Fan and Li (2001), Zou and Hastie (2005), Zou (2006), Hastie
et al. (2009), and Zhang (2010). Feature extraction, on the other hand, seeks a transformation of
variables. The feature extraction is more popular in an unsupervised learning context and principal
component analysis (PCA) (Pearson, 1901) is a canonical example.

Sufficient dimension reduction (SDR) is a feature extraction method for supervised learning,
which reduces the predictor dimension while preserving information about the response. Unlike the
penalized approaches for the feature selection, SDR is often model-free and has gained great interest
in many applications. SDR seeks a matrix B = (b1, . . . ,bd) ∈ Rp×d, or more precisely span{B}, which
satisfies the following assumption:

Y y X | B>X, (1.1)
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where y denotes statistical independence. span{B} satisfying (1.1) is referred to as dimension reduc-
tion subspace (DRS). When d � p, SDR projects the predictors to a lower dimensional subspace
while preserving information of Y contained in X. In other word, B>X captures all the regression
information of Y contained in X. SDR under (1.1) is often referred to as the linear SDR since BT X
is a linear function of X. Note that DRS is not unique since any linear transformation of B satisfying
(1.1) is DRS. Thereby, the intersection of all DRSes is defined as the central subspace, which is the
smallest denoted by SY |X, and is the primal identifiable target of interest in SDR. The dimension of
the central subspace dim(SY |X) = d referred to as a structural dimension is another important quantity
to be estimated. Since the SY |X exists under mild conditions (Yin et al., 2008), we assume B in (1.1)
spans SY |X.

There are numerous ways to estimate B, the basis matrix of SY |X, and the earliest proposal is the
sliced inverse regression (SIR) (Li, 1991). The idea of SIR is simple and based on the following result

E(X | Y) ∈ SY |X, (1.2)

and Li (1991) proposed to estimate the inverse regression function E(X|Y) by slicing Y , which ex-
plains its name, SIR. The SIR sparked numerous subsequent “inverse” SDR methods based on the
conditional moment of x given Y , such as the slice averaged variance estimation (SAVE) (Cook and
Weisberg, 1991), contour regression (Li et al., 2005), directional regression (Li and Wang, 2007),
cumulative slicing estimation (Zhu et al., 2010), among many others. Since the inverse moment is
easily obtained by slicing, the inverse methods are computationally efficient to implement. However,
they require untestable assumptions on X, such as the linearity condition and the constant variance
condition.

As an alternative to the inverse SDR methods, the “forward” SDR method has been proposed. The
forward SDR method achieves SDR by using the conditional expectation of X given Y . The earliest
example of the forward SDR method is the principal Hessian direction (pHd) (Li, 1992). The key idea
of pHd is that the Hessian matrix of E(Y |X) belongs to the central mean subspace (Li, 1992), denoted
by SE(Y |X). That is,

∂2E(Y | X)
∂X∂XT ⊆ SE(Y |X). (1.3)

The central mean subspace SE(Y |X) ⊆ SY |X is the minimal subspace of X spanned by B satisfying
E(Y |X) = E(Y |BT X), often regarded as an alternative target of SY |X. One advantage of the forward
approach is that it does not require additional assumptions, such as the linearity condition that is
indispensable to inverse methods. There are several forward SDR methods, including a dimension
reduction for a multi-index model (Hristache et al., 2001), outer product of gradient method (OPG)
(Xia et al., 2002), minimum average variance estimation (MAVE) (Xia et al., 2002), which is a com-
putationally enhanced variant of the OPG estimator. Also, Xia (2007) proposed the dOPG method
that extends the idea of the OPG to estimate SY |X by replacing the conditional mean. It requires no
strong assumptions on the covariates or the functional relation between regressors and the response
variable. Thereafter, Kong and Xia (2014) proposed the adaptive composite quantile approach with
OPG method (qOPG) for identifying the SY |X directions exhaustively, and Kang and Shin (2022) re-
cently proposed weighted OPG (wOPG) for SDR in a binary classification. We also refer to Chapter
11 of Li (2018) for a concise overview of the forward SDR methods.

Cook (2007) and Lee et al. (2013) generalized the linear SDR (1.1) and introduced the nonlinear
SDR which seeks a function φ : Rp → Rd that satisfies

Y y X | φ(X), (1.4)
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where φ(·) is assumed to be a unique modulo injective transformation of X in order to guarantee its
identifiability. The nonlinear SDR methods under (1.4) have been proposed by directly generalizing
the idea of the linear SDR methods to nonlinear function via kernel trick. See for example, kernel SIR
(Wu, 2008), and kernel canonical correlation analysis developed by Akaho (2001) and Fukumizu et
al. (2007), to name a few.

In the meantime, Li et al. (2011) proposed a novel idea of SDR called principal support vector
machine (PSVM) that can solve both linear and nonlinear SDR under a unified framework. The
principle idea of the PSVM is simple as follows. First, the response Y is dichotomized and a pseudo
response Ỹc is defined as 1 if Y ≥ c and −1 otherwise. Then, we train a support vector machine with
respect to (Ỹc,Z), where Z is a standardized predictor. Li et al. (2011) showed that the separating
hyperplane obtained by the SVM contains information about SY |X.

The beauty of the PSVM comes from the fact that it provides a connection between SDR and the
SVM, a conventional supervised learning method. The PSVM can handle both linear and nonlinear
SDR in a unified framework, as the SVM does. Moreover, the use of SVM is not essential for esti-
mating SY |X and one can replace the hinge loss with other popular covex loss functions. This leads to
a variety of extensions of the PSVM. For example, Artemiou and Dong (2016) proposed the principal
Lq-SVM with Lq hinge loss, Shin and Artemiou (2017) proposed the principal logistic loss with bi-
nomial likelihood loss, Wang et al. (2018) proposed the principal quantile regression with the check
loss, and Artemiou et al. (2021) proposed the principal least square SVM with the squared loss.

The PSVM appears to be an inverse SDR method that slices data based on Y , but it can also be
viewed as a forward method because it repeatedly applies the usual SVM algorithm to estimate the
optimal hyperplanes. Some variants of the PSVM, such as principal weighted SVM (PWSVM) (Shin
et al., 2017), principal quantile regression (Wang et al., 2018) do not require slicing Y , i.e., Ỹc, but
training a series of weighted supervised learning with original response. In that, those methods can
be regarded as forward SDR approaches. In this regard, the PSVM provides a connection between the
inverse and forward SDR methods.

This article is to provide a concise but comprehensive overview of the SDR method that stems
from the PSVM, which we will call the principal machine (PM). The rest of the article is organized
as follows. In Section 2, we start with briefly reviewing PSVM which serves as a building block of
PM. In Section 3, we introduce the principal machine, a general form of the PSVM that covers all of
its variants. In Section 4, some miscellaneous including computation and large sample properties are
described, respectively, both of which turn out straightforward since it is a simple convex optimization.
The penalized principal machine is introduced in Section 5. Concluding remarks are followed in
Section 6.

2. Principal support vector machine

Support vector machine (SVM) (Vapnik, 1999) is a well-known binary classifier that seeks an
optimal hyperplane to separate two classes. Borrowing the idea of the SVM, Li et al. (2011) proposed
the PSVM for the linear SDR (1.1) that minimizes the following objective function:

β>Σβ + λE
[
1 − Ỹc

{
α + β>(X − EX)

}]
+
, (2.1)

where Ỹc denotes the dichotomized pseudo response that takes 1 if Y > c and −1 otherwise, Σ =

var(X) is the covariance matrix of X, and x+ = max(0, x). A positive constant λ is a cost parameter
that balances the goodness of fit and the complexity of the model, and its choice is not overly sensitive
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for estimating SY |X. We remark that (2.1) is a population level objective function of the linear SVM
for (Ỹc,Z) where Z = Σ−1/2(X − EX) is a standardized predictor.

Li et al. (2011) established Theorem 1 that provides the theoretical foundation of the PSVM.

Theorem 1. Assume the linearity condition that E(X|B>X) is a linear function of B>X, where B is
in (1.1). Let

(
α∗,β∗

)
denote the minimizer of (2.1), then β∗ ∈ SY |X for any given c.

For a given set of data (Xi,Yi), i = 1, . . . , n, the PSVM estimates SY |X as follows by Theorem 1.
Given a grid min Yi < c1 < · · · < cH < max Yi, the PSVM solves a sequence of objective function
(2.2) for different values of ch:

β>Σ̂nβ +
λ

n

n∑
i=1

[
1 − Ỹi,ch

(
α + β>

(
Xi − Xn

))]
+
. (2.2)

Let (α̂h, β̂h) denotes the minimizer of (2.2), which we call the PSVM solution. Then, SY |X, is esti-
mated by span(V̂), where V̂ = (v̂1, . . . , v̂d) is a (p × d) matrix whose jth column, v̂ j is the jth leading
eigenvector of M̂n in (2.3).

M̂n =

H∑
h=1

β̂n,hβ̂
>

n,h. (2.3)

Li et al. (2011) showed that the PSVM performs better than classical SDR methods, such as SIR,
SAVE, etc.

Due to its similarity to the SVM, one can readily extend the linear PSVM to its nonlinear counter.
Namely, the kernel PSVM minimizes the population objective function:

〈ψ,Σψ〉H + λE
[
1 − Ỹ (α + ψ(X) − Eψ(X))

]
+
, (2.4)

where ψ being a function in a Hilbert spaceH of functions of X, 〈·, ·〉H is the inner product inH , and
Σ is the covariance operator. Let (α∗, ψ∗) be the minimizer of (2.4), ψ∗ is necessarily a function of the
sufficient predictor φ(X) in (1.4). A sample version of (2.4) can be readily obtained by employing the
reproducing kernel Hilbert space (RKHS) (Wahba, 1999), just like the SVM.

3. Principal machines: A generalization of the PSVM

The PSVM opens up a new class of SDR approaches by connecting the conventional supervised
learning algorithm to the SDR context, and achieves both linear and nonlinear SDR in a unified frame-
work. Theorem 1 provides the theoretical foundation of the PSVM and it turns out that we only require
the convexity of the hinge loss to prove Theorem 1. It leads to numerous variations of the PSVM by
replacing the hinge loss with other convex loss functions.

There are two types of principal machines (PM) depending on how to generalize the idea of the
PSVM. One is response-based principal machine (RPM) and the other is loss-based principal machine
(LPM).

3.1. Response-based principal machine (RPM)

Note that SVM computes multiple solutions to estimate SY |X by generating multiple pseudo re-
sponses Ỹc for different values of c. Variants of RPM are constructed by simply replacing the hinge
loss of the PSVM with other convex loss functions.
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Table 1: Different types of the convex loss functions for response-based principal machine along with the corr
esponding methods
hhhhhhhhhhhhLoss

Method
PSVM LqPSVM PLR PLSSVM

L(Ỹc, f )
[
1 − Ỹc f

]
+

([
1 − Ỹc f

]
+

)q
ln

{
1 + e(−Ỹc f )

} (
1 − Ỹc f

)2
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Figure 1: SVM(hinge), L2hinge (colored in red), logistic (binomial log-likelihood, colored in blue), and least
squares (ls, colored in green) loss functions are visualized. The loss functions are smooth, convex, and continu-

ously differentiable functions across the support, except for the hinge loss (solid black).

Assuming X is centered without loss of generality, RPM minimizes the following objective func-
tion:

β>Σβ + λE
{
L
(
Ỹc, α + β>X

)}
, (3.1)

where L(Y, f ) denotes a convex loss function for a linear model f = α + β>X to learn Y . We note
that (3.1) yields different minimizers as the (pseudo) response Ỹc changes while the loss function L is
fixed, like the name of RPM. Some examples of RPM are presented below and each corresponding
loss functions are summarized in Table 1 and visualized in Figure 1.

The PSVM (Li et al., 2011) is a canonical method of RPM. It adopts the hinge loss function for
L(Y, f ) as we discussed earlier in (2.1). By noticing that the solution of SVM may not be unique
with respect to α, Artemiou and Dong (2016) proposed principal LqPSVM (q > 1) in both linear
and nonlinear manners. The loss function of LqSVM is found in Table 1. The objective function of
principal LqSVM is strictly convex for both (α,β), which guarantees the uniqueness of the solution.

The advantages of the logistic regression over SVM are obvious since its loss function is smooth
and strictly convex. Not only does it entail simpler asymptotic results under less stringent conditions,
but it is also computationally stable due to the convexity of the loss. As such, Shin and Artemiou
(2017) proposed principal logistic regression (PLR) by applying a binomial log-likelihood (or logistic)
loss function.
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Table 2: Different types of the convex loss functions for loss-based principal machine along with the correspond
ing methods
XXXXXXXXLoss

Method
WPSVM PWLR PWLSSVM PQR PALS

Lc(Y, f ) π(Y; c)
[
(1 − Y f )

]
+ π(Y; c) ln{1 + e(−Y f )} π(Y; c) (1 − Y f )2 ρc (Y − f ) ρA

c (Y − f )

*ρc(u) = u{c − I(u < 0)}, ρA
c (u) = (1 − c)u2I(u < 0) + cu2I(u ≥ 0).

Recently, Artemiou et al. (2021) proposed a principal least squares SVM (PLSSVM) that uses a
least squares loss function. PLSSVM enjoys better estimation of SY |X and it also can be used in case
of streamed data for an instant real-time update.

3.2. Loss-based principal machine (LPM)

We have just seen how RPM is formulated along with some examples. When Y is binary, however,
the possible choice of pseudo response Ỹc is one. Thus RPM cannot recover SY |X exhaustively if
dim(SY |X) > 1. To tackle this issue, Shin et al. (2017) proposed the principal weighted support
vector machine (PWSVM) which gets multiple solutions by changing the shape of the loss function
via imposing class weights while keeping the response Y fixed. Again, the hinge loss is not the only
choice, and LPM refers to PMs that follow this loss-changing idea.

LPM minimizes the following objective function:

β>Σβ + λE
{
Lc

(
Y, α + β>X

)}
, (3.2)

where Lc(y, f ) denotes the loss function with an additional paramter c that controls its shape. One
standard way to define Lc with binary Y is to introduce class weight as follows.

Lc(Y, f ) = π(Y; c)L(Y, f ), c ∈ (0, 1),

where π(Y; c) denotes class weight which takes c if y = 1 and 1 − c otherwise.
One can extend this idea to a regression problem with a continuous response by employing asym-

metric loss functions, such as the check loss function for a quantile regression and the asymmetric
squared loss function. Below are some examples of LPM, and their loss functions are summarized in
Table 2.

The weighted principal support vector machine (PWSVM) (Shin et al., 2017) is an SDR method
for a binary classification, which borrows the idea of weighted SVM. It adopts the hinge loss and
imposes the class weights differently by the change of the cutoff value c. Shin et al. (2017) showed a
fisher consistency of the PWSVM ensures that an estimated hyperplane optimally separates the two
classes. Also, by applying weighted logistic loss and weighted least square loss, Kim and Shin (2019)
and Jang et al. (2023) suggested the principal weighted logistic regression (PWLR) and principal
weighted least square SVM (PWLSSVM), respectively. Those methods effectively estimate SY |X for
a binary classification.

For a continuous response Y ∈ R, LPM is also demonstrated by applying an asymmetric loss
function. Quantile regression (Koenker and Bassett, 1978) is a well-known method for estimating
different quantile functions by changing the angle of the check loss over the given quantile τ. As
such, Wang et al. (2018) proposed principal quantile regression (PQR) for SDR. PQR chooses the
check loss, ρc(u) = u{c − I(u < 0)} for each cutoff value, c ∈ (0, 1). PQR echoes the advantages
of quantile regression in that it efficiently tackles heteroscedasticity in data and is robust to outliers.



PSVM and its generalization 241

Also, the principal asymmetric L2 regression for SDR is proposed by Soale and Dong (PALS, 2022).
PALS adopts the asymmetric expectile loss function ρA

c (u) = (1 − c)u2I(u < 0) + cu2I(u ≥ 0). It
performs well in the presence of heteroscedasticity by synthesizing different expectile levels. Other
than the above examples, we can imagine any type of LPM by varying the loss function following the
cutoff value. It illustrates the extensibility of the PSVM.

4. Miscellaneous

As for a computational aspect, several functions in R programming, such as ipop in kernlab
package and quadprog in quadprog package are often used to solve SVM via quadratic programming.
These functions are also useful for solving the PSVM, which is regarded to be a sequence of SVMs.

However, when dealing with high-dimensional datasets, quadratic programming is computation-
ally expensive and often unstable. Considering the convexity of the objective function of the PSVM
and its variants, the gradient descent (GD) algorithm (including its stochastic version) proves itself a
simple and reliable alternative. When coupled with a convex loss function, the GD offers several ad-
vantages, including a guaranteed convergence, improved stability, and computational efficiency (Boyd
and Vandenberghe, 2004).

Furthermore, the GD for the PSVM is a flexible solver in that the GD only requires a derivative
of the objective function, which can be easily calculated if the loss function is specified in advance.
Or the derivative of any arbitrary convex function is easily obtained numerically, as long as it retains
differentiability and convexity within its support. This flexibility facilitates the development of a
unified algorithm for principal sufficient dimension reduction methods.

The convexity of the objective function of the PSVM motivates a direct application of the standard
M-estimation theory (Van der Vaart, 2000) and existing asymptotic results of the SVM (Jiang et al.,
2008) can mostly be applied in the realm of the PSVM. Consistency and asymptotic normality of
the estimates (α̂, β̂) in (2.2) are well-addressed in Section 7 of Li et al. (2011) along with proofs and
regularity conditions.

Estimating the dimension d in (1.1) of the central subspace, referred to as structural dimension is
also a crucial component of sufficient dimension reduction. In this regard, Li et al. (2011) proposed
the BIC-type criterion for estimating d as below:

d̂ = argmax
d∈{1,...,p}

d∑
j=1

v j − ρ
d log n
√

n
v1, (4.1)

where v1 ≥ · · · ≥ vp(p > d) are eigenvalues of M̂n in (2.3). Following the lines of Theorem 8 of
Li et al. (2011) and Theorem 4 of Shin et al. (2017), the BIC-type criterion in (4.1) is proofed as a
consistent estimator by showing lim

n→∞
P(d̂ = d) = 1. A tuning parameter ρ can be achieved by a cross

validation.

5. Sparse principal machines via penalization

Interpreting the estimates of B in (1.1) is not straightforward. This difficulty arises from the fact
that a reduced dimension B>X represents a linear combination of all original variables. This obscures
the underlying relationship between regressors and response.

To illustrate this issue more clearly, let’s consider a simple model Y = exp (−β>0 X) + 0.1ε, where
X ∈ R6, and all predictors and the ε are independent standard normal variables. Assume that the
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central subspace SY |X is spanned by β0 = (1,−1, 1, 0, 0, 0)/
√

3. However, SDR methods, such as the
PSVM, often estimate a vector β̂ that includes all predictors, even when some may not be truly rele-
vant. For example, even if the PSVM can estimated β̂ = (0.933,−0.912, 0.891, 0.021, 0.009, 0.003)>

based on finite random samples, the last three coefficients are comparatively tiny, but they still con-
tribute to the estimates, blurring the fact that β0 only contains the first three predictors. This demon-
strates the difficulty of interpreting SDR results due to the mixing of information across all dimensions
(Li, 2007).

In the meantime, sparse SDR approaches aim to achieve both dimension reduction and variable
selection simultaneously by providing a sparse representation of the basis for the central subspace
SY |X. In this regard, several sparse SDR methods have been proposed. See, for example, Li (2007),
Bondell and Li (2009), Chun and Keleş (2010), and Wu and Li (2011).

Sparse SDR assumes a unique partition X> = (X>+ ,X>− ) that satisfies

Y ⊥ X− | X+ , (5.1)

where X+ ∈ Rq and X− ∈ Rp−q for some q(� p) (Bondell and Li, 2009; Cook, 2004). We call X+ and
X− relevant and irrelevant variables, respectively. This partitioning leads to conditional independence.
Here, we assume the first q predictors (of a total of p) constitute the relevant subset. This assumption
and the conditional independence imply that the last p−q rows of the matrix B are zero, which makes
B sparse, but also enforces identical sparsity patterns across its columns.

Likewise, a strategy for a variable selection in a regression problem (Among many others, Tibshi-
rani, 1996; Fan and Li, 2001; Zou and Hastie, 2005; Hastie et al., 2009), the sparsity of B̂ can also be
achieved by a penalization.

Given a set of data (Xi,Yi), a sample level objective function of sparse SDR based on RPM is
given by (5.2).

H∑
h=1

β>h Σ̂βh +
λ

n

n∑
i=1

L
(
Ỹi,h, α + β>Xi

) +

p∑
j=1

pγ
(

max
1≤h≤H

∣∣∣β jh

∣∣∣) , (5.2)

where assumed Xi is centered, pγ(·) denotes a non-convex penalty function, such as SCAD (Fan
and Li, 2001) and group lasso (Yuan and Lin, 2006), which are modulated by a tuning parameter γ
that controls the level of the sparsity of the solution. Here Yh and β>h = (β1h, β2h, . . . , βph) are the
pseudo response and the corresponding coefficient vector with a given cutoff value ch, h = 1, 2, . . . ,H,
respectively. By penalizing the maximum of |β jh| over h = 1, 2, . . . ,H for a given j = 1, 2, . . . , p,
the penalty forces the entire elements within the same row of B to shrink towards zero, achieving the
desired sparsity structure. The SCAD penalty has gained popularity in variable selection contexts,
due to its provable oracle property (Fan and Li, 2001).

For example, Shin and Artemiou (PPLR, 2017) proposed penalized principal logistic regression.
This method utilizes the max-SCAD penalty (Fan and Li, 2001) applied to the PLR method described
in section 3.1. The oracle property of the PPLR is addressed with detailed explanation and proof.

6. Discussion

Principal support vector machine (PSVM) (Li et al., 2011) offers a novel and powerful solution to
a sufficient dimension reduction. We briefly review various aspects of the PSVM, including its linear
and nonlinear models, the sample level estimation process, and some theoretical properties. Also,
the extensibility of the PSVM is addressed via LPM and RPM frameworks. Sparse SDR applies a
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penalization method to perform dimension reduction and feature selection simultaneously to improve
the interpretability of the SDR result. We also discussed the computational usefulness of the gradient
descent algorithm.

This paper investigates the application of the PSVM for high-dimensional data analysis, based on
the scenario where the data dimension p can be large but fixed. Researchers will encounter significant
analytical challenges as p diverges (p→ ∞). Estimating the covariance matrix of predictors under the
PSVM scheme becomes difficult, necessitating stricter conditions to assure the validity of covariance
matrix estimators as p increases (Wu and Li, 2011; Yin and Hilafu, 2015). This issue can be addressed
by combining the PSVM with a large covariance matrix estimation method (Bickel and Levina, 2008).

The vast size of datasets inevitably entails a computational burden. One possible solution is to
exploit the distributed computing (Forero et al., 2010; Jin et al., 2019). In the case where the data
is collected in a stream-wise manner, typically done online, the question will be asked as to how an
existing estimator can be effectively updated as new data streams become available. In response to
this, Artemiou et al. (2021) proposed the principal least squares support vector machine (PLSSVM),
which enables real-time sufficient dimension reduction particularly useful for online learning and
streaming data scenarios. This opens further research topics of SDR for large-scale datasets.

Reducing high-dimensional data to lower dimensions through SDR aims to improve the accuracy
and efficiency of regression or classification tasks. However, a common pitfall lies in treating the
estimated sufficient predictors as the true ones, leading to overestimated confidence levels and biased
results. Addressing these troubles, several studies including Kim et al. (2020) have explored post-
dimension reduction inference. Despite these efforts, existing methods may lack effectiveness across
all situations. Further researches are also needed on this issue.

In addition, we provide several potential areas for exploration and improvement in PSVM. First,
PSVM primarily relies on data, but incorporating prior knowledge about the relationship between
variables could potentially improve performance as Reich et al. (2011) proposed SDR via Bayesian
mixture modeling and Power and Dong (2021) suggested Bayesian model averaging sliced inverse
regression. Second, extending PSVM to handle ordinal or mixed data types would broaden its appli-
cability (Bura et al., 2022; Quach and Li, 2023). Lastly, following a trend of broad application of deep
neural networks (DNN), the DNN framework can also be applied to the principal sufficient dimen-
sion reduction methods. Banijamali et al. (2018) proposed a deep variational approach for sufficient
dimension reduction, and Kapla et al. (2022) suggested a fusing SDR with neural networks.

Like many existing dimension reduction approaches, PSVM is a new method that aims to solve
challenging high-dimensional problems. So far, it has been difficult to find literature on its application
to real-world problems. However, tailoring PSVM to specific domains such as bioinformatics (Li,
2010), text analysis (Kim et al., 2005), or survey analysis (Weng and Young, 2017) could significantly
improve its impact on related research areas.
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Chun H and Keleş S (2010). Sparse partial least squares regression for simultaneous dimension reduc-

tion and variable selection, Journal of the Royal Statistical Society Series B: Statistical Method-
ology, 72, 3–25.

Cook RD (2004). Testing predictor contributions in sufficient dimension reduction, The Annals of
Statistics, 32, 1062–1092.

Cook RD (2007). Fisher lecture: Dimension reduction in regression, Statistical Science, 22, 1–26.
Cook RD and Weisberg S (1991). Discussion of “sliced inverse regression for dimension reduction”,

Journal of the American Statistical Association, 86, 28–33.
Fan J and Li R (2001). Variable section via nonconcave penalized likelihood and its oracle properties,

Journal of the American Statistical Association, 96, 1348–1360.
Forero PA, Cano A, and Giannakis GB (2010). Consensus-based distributed linear support vector

machines, In Proceedings of the 9th ACM/IEEE International Conference on Information Pro-
cessing in Sensor Networks, Stockholm, 35–46.

Fukumizu K, Bach FR, and Gretton A (2007). Statistical consistency of kernel canonical correlation
analysis, Journal of Machine Learning Research, 8, 361–383.

Hastie T, Tibshirani R, Friedman J, and Friedman JH (2009). The Elements of Statistical Learning:
Data Mining, Inference, and Prediction, Springer, New York.

Hristache M, Juditsky A, Polzehl J, and Spokoiny V (2001). Structure adaptive approach for dimen-
sion reduction, Annals of Statistics, 29, 1537–1566.

Jang HJ, Shin SJ, and Artemiou A (2023). Principal weighted least square support vector machine:
An online dimension-reduction tool for binary classification, Computational Statistics & Data
Analysis, 187, 107818.

Jiang B, Zhang X, and Cai T (2008). Estimating the confidence interval for prediction errors of
support vector machine classifiers, Journal of Machine Learning Research, 9, 521–540.

Jin J, Ying C, and Yu Z (2019). Distributed estimation of principal support vector machines for
sufficient dimension reduction, Available from: arXiv preprint arXiv:1911.12732

Kang J and Shin SJ (2022). A forward approach for sufficient dimension reduction in binary classifi-
cation, The Journal of Machine Learning Research, 23, 9025–9055.

Kapla D, Fertl L, and Bura E (2022). Fusing sufficient dimension reduction with neural networks,
Computational Statistics & Data Analysis, 168, 107390.

Kim B and Shin SJ (2019). Principal weighted logistic regression for sufficient dimension reduction
in binary classification, Journal of the Korean Statistical Society, 48, 194–206.

Kim H, Howland P, Park H, and Christianini N (2005). Dimension reduction in text classification with
support vector machines, Journal of Machine Learning Research, 6, 37–53.



PSVM and its generalization 245

Kim K, Li B, Zhou Y, and Li L (2020). On post dimension reduction statistical inference, The Annals
of Statistics, 48, 1567–1592.

Koenker R and Bassett G (1978). Regression quantiles, Econometrica, 46, 33–50.
Kong E and Xia Y (2014). An adaptive composite quantile approach to dimension reduction, The

Annals of Statistics, 42, 1657–1688.
Lee KY, Li B, and Chiaromonte F (2013). A general theory for nonlinear sufficient dimension reduc-

tion: Formulation and estimation, The Annals of Statistics, 41, 221–249.
Li B (2018). Sufficient Dimension Reduction: Methods and Applications with R, CRC Press, Boca

Raton, FL.
Li B, Artemiou A, and Li L (2011). Principal support vector machines for linear and nonlinear suffi-

cient dimension reduction, The Annals of Statistics, 39, 3182–3210.
Li B and Wang S (2007). On directional regression for dimension reduction, Journal of the American

Statistical Association, 102, 997–1008.
Li B, Zha H, and Chiaromonte F (2005). Contour regression: A general approach to dimension

reduction, The Annals of Statistics, 33, 1580–1616.
Li K-C (1991). Sliced inverse regression for dimension reduction (with discussion), Journal of the

American Statistical Association, 86, 316–342.
Li K-C (1992). On principal Hessian directions for data visualization and dimension reduction: An-

other application of Stein’s lemma, Journal of the American Statistical Association, 87, 1025–
1039.

Li L (2007). Sparse sufficient dimension reduction, Biometrika, 94, 603–613.
Li L (2010). Dimension reduction for high-dimensional data, Statistical Methods in Molecular Biol-

ogy, 620, 417–434.
Pearson K (1901). On lines and planes of closest fit to systems of points in space, The London,

Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2, 559–572.
Power MD and Dong Y (2021). Bayesian model averaging sliced inverse regression, Statistics &

Probability Letters, 174, 109103.
Quach H and Li B (2023). On forward sufficient dimension reduction for categorical and ordinal

responses, Electronic Journal of Statistics, 17, 980–1006.
Reich BJ, Bondell HD, and Li L (2011). Sufficient dimension reduction via Bayesian mixture model-

ing, Biometrics, 67, 886–895.
Shin SJ and Artemiou A (2017). Penalized principal logistic regression for sparse sufficient dimension

reduction, Computational Statistics & Data Analysis, 111, 48–58.
Shin SJ, Wu Y, Zhang HH, and Liu Y (2017). Principal weighted support vector machines for suffi-

cient dimension reduction in binary classification, Biometrika, 104, 67–81.
Soale A-N and Dong Y (2022). On sufficient dimension reduction via principal asymmetric least

squares, Journal of Nonparametric Statistics, 34, 77–94.
Tibshirani R (1996). Regression shrinkage and selection via the lasso, Journal of Royal Statistical

Society, series B, 58, 267–288.
Van der Vaart AW (2000). Asymptotic Statistics, Cambridge University Press, Cambridge.
Vapnik V (1999). The Nature of Statistical Learning Theory, Springer Science & Business Media,

New York.
Wahba G (1999). Support vector machines, reproducing kernel Hilbert spaces, and randomized

GACV, Advances in Kernel Methods-Support Vector Learning, 6, 69–87.
Wang C, Shin SJ, and Wu Y (2018). Principal quantile regression for sufficient dimension reduction

with heteroscedasticity, Electronic Journal of Statistics, 12, 2114–2140.



246 Jungmin Shin, Seung Jun Shin

Weng J and Young DS (2017). Some dimension reduction strategies for the analysis of survey data,
Journal of Big Data, 4, 1–19.

Wu H-M (2008). Kernel sliced inverse regression with applications to classification, Journal of Com-
putational and Graphical Statistics, 17, 590–610.

Wu Y and Li L (2011). Asymptotic properties of sufficient dimension reduction with a diverging
number of predictors, Statistica Sinica, 2011, 707.

Xia Y (2007). A constructive approach to the estimation of dimension reduction directions, The
Annals of Statistics, 35, 2654–2690.

Xia Y, Tong H, Li WK, and Zhu L (2002). An adaptive estimation of dimension reduction space,
Journal of the Royal Statistical Society Series B: Statistical Methodology, 64, 363–410.

Yin X and Hilafu H (2015). Sequential sufficient dimension reduction for large p, small n problems,
Journal of the Royal Statistical Society Series B: Statistical Methodology, 77, 879–892.

Yin X, Li B, and Cook RD (2008). Successive direction extraction for estimating the central subspace
in a multiple-index regression, Journal of Multivariate Analysis, 99, 1733–1757.

Yuan M and Lin Y (2006). Model selection and estimation in regression with grouped variables,
Journal of the Royal Statistical Society Series B: Statistical Methodology, 68, 49–67.

Zhang C-H (2010). Nearly unbiased variable selection under minimax concave penalty, The Annals
of Statistics, 38, 894–942.

Zhu L-P, Zhu L-X, and Feng Z-H (2010). Dimension reduction in regressions through cumulative
slicing estimation, Journal of the American Statistical Association, 105, 1455–1466.

Zou H (2006). The adaptive lasso and its oracle properties, Journal of the American Statistical Asso-
ciation, 101, 1418–1429.

Zou H and Hastie T (2005). Regularization and variable selection via the elastic net, Journal of the
Royal Statistical Society Series B: Statistical Methodology, 67, 301–320.

Received January 19, 2024; Revised February 16, 2024; Accepted February 20, 2024


