Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (RS-2023-00242528).
References
- Agarwal S, Graepel T, Herbrich R, Har-Peled S, Roth D, and Jordan MI (2005). Generalization bounds for the area under the ROC curve, Journal of Machine Learning Research, 6, 393-425.
- Arzhaeva Y, Duin RP, and Tax D (2006). Linear model combining by optimizing the area under the ROC curve, Proceedings of 18th International Conference on Pattern Recognition (ICPR'06), Vol.4, IEEE, 119-122.
- Ataman K, Street WN, and Zhang Y (2006). Learning to rank by maximizing AUC with linear programming, The 2006 IEEE International Joint Conference on Neural Network Proceedings, IEEE, pp. 123-129.
- Bouveyron C and Brunet-Saumard C (2014). Model-based clustering of high-dimensional data: A review, Computational Statistics & Data Analysis, 71, 52-78.
- Brefeld U and Scheffer T (2005). AUC maximizing support vector learning, Proceedings of the ICML 2005 Workshop on ROC Analysis in Machine Learning.
- Clemencon S, Depecker M, and Vayatis N (2013). An empirical comparison of learning algorithms ' for nonparametric scoring: The treerank algorithm and other methods, Pattern Analysis and Applications, 16, 475-496. https://doi.org/10.1007/s10044-012-0299-1
- Clemencon S, Lugosi G, and Vayatis N (2008). Ranking and empirical minimization of U-statistics, The Annals of Statistics, 36, 844-874. https://doi.org/10.1214/009052607000000910
- Cohen MB, Elder S, Musco C, Musco C, and Persu M (2015). Dimensionality reduction for k-means clustering and low rank approximation, Proceedings of the Forty-Seventh Annual ACM Symposium on Theory of Computing, 163-172.
- Combettes PL and Wajs VR (2005). Signal recovery by proximal forward-backward splitting, Multiscale Modeling & Simulation, 4, 1168-1200.
- Cortes C and Vapnik V (1995). Support-vector networks, Machine Learning, 20, 273-297. https://doi.org/10.1007/BF00994018
- Duda RO, Hart PE, and Stork DG (1973). Pattern Classification and Scene Analysis, Vol.3, Wiley New York.
- Egan JP (1975). Signal detection theory and ROC analysis, (No Title), Available from: https://www.amazon.com/Detection-Analysis-Academic-Cognition-Perception/dp/0122328507
- Feldman V, Guruswami V, Raghavendra P, and Wu Y (2012). Agnostic learning of monomials by halfspaces is hard, SIAM Journal on Computing, 41, 1558-1590. https://doi.org/10.1137/120865094
- Gao W and Zhou Z-H (2015). On the consistency of AUC pairwise optimization, Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence.
- Kim D and Shin SJ (2020). The regularization paths for the ROC-optimizing support vector machines, Journal of the Korean Statistical Society, 49, 264-275. https://doi.org/10.1007/s42952-019-00017-9
- Kim H, Sohn I, and Shin SJ (2021). Regularization paths of L1-penalized ROC curve-optimizing support vector machines, Stat, 10, e400.
- Lei Y and Ying Y (2021). Stochastic proximal AUC maximization, The Journal of Machine Learning Research, 22, 2832-2876.
- Liu M, Yuan Z, Ying Y, and Yang T (2019). Stochastic auc maximization with deep neural networks, Available from: arXiv preprint arXiv:1908.10831
- Menon AK and Williamson RC (2016). Bipartite ranking: A risk-theoretic perspective, The Journal of Machine Learning Research, 17, 6766-6867.
- Natole M, Ying Y, and Lyu S (2018). Stochastic proximal algorithms for AUC maximization, International Conference on Machine Learning, PMLR, 80, 3710-3719.
- Norton M and Uryasev S (2019). Maximization of auc and buffered auc in binary classification, Mathematical Programming, 174, 575-612. https://doi.org/10.1007/s10107-018-1312-2
- Rakotomamonjy A (2004). Optimizing area under Roc curve with SVMs, ROCAI, 71-80.
- Rockafellar RT (1976). Monotone operators and the proximal point algorithm, SIAM Journal on Control and Optimization, 14, 877-898. https://doi.org/10.1137/0314056
- Rousseeuw PJ (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis, Journal of Computational and Applied Mathematics, 20, 53-65. https://doi.org/10.1016/0377-0427(87)90125-7
- Thorndike RL (1953). Who belongs in the family?, Psychometrika, 18, 267-276. https://doi.org/10.1007/BF02289263
- Tian Y, Shi Y, Chen X, and Chen W (2011). AUC maximizing support vector machines with feature selection, Procedia Computer Science, 4, 1691-1698. https://doi.org/10.1016/j.procs.2011.04.183
- Tibshirani R (1996). Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society Series B: Statistical Methodology, 58, 267-288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
- Uematsu K and Lee Y (2017). On theoretically optimal ranking functions in bipartite ranking, Journal of the American Statistical Association, 112, 1311-1322. https://doi.org/10.1080/01621459.2016.1215988
- Yang Z, Shen W, Ying Y, and Yuan X (2020). Stochastic AUC optimization with general loss, Communications on Pure & Applied Analysis, 19, 4191-4212.
- Ying Y, Wen L, and Lyu S (2016). Stochastic online AUC maximization, Advances in Neural Information Processing Systems, 29.
- Zhang X, Saha A, and Vishwanathan S (2012). Smoothing multivariate performance measures, The Journal of Machine Learning Research, 13, 3623-3680. https://doi.org/10.1002/9780470057339.vnn052
- Zhao P, Hoi SC, Jin R, and Yang T (2011). Online AUC maximization, Available from: https://icml.cc/2011/papers/198icmlpaper.pdf
- Zhu J, Rosset S, Tibshirani R, and Hastie T (2003). 1-norm support vector machines, Advances in Neural Information Processing Systems, 16.