DOI QR코드

DOI QR Code

Morphology of the aortic arch branching pattern in raccoon dogs (Nyctereutes procyonoides, Gray, 1834)

  • Euiyong Lee (Department of Veterinary Medicine, College of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University) ;
  • Young-Jin Jang (Department of Veterinary Medicine, College of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University) ;
  • In-Shik Kim (Department of Veterinary Medicine, College of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University) ;
  • Hyun-Jin Tae (Department of Veterinary Medicine, College of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University) ;
  • Jeoungha Sim (Department of Nursing, College of Medical Science, Jeonju University) ;
  • Dongchoon Ahn (Department of Veterinary Medicine, College of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University)
  • Received : 2023.12.03
  • Accepted : 2024.02.12
  • Published : 2024.03.31

Abstract

Background: Aortic arch (AA) branching patterns vary among different mammalian species. Most previous studies have focused on dogs, whereas those on raccoon dogs remain unexplored. Objectives: The objective of this study was to describe the AA branching pattern in raccoon dogs and compare their morphological features with those of other carnivores. Methods: We prepared silicone cast specimens from a total of 36 raccoon dog carcasses via retrograde injection through the abdominal aorta. The brachiocephalic trunk (BCT) branching patterns were classified based on the relationship between the left and right common carotid arteries. The subclavian artery (SB) branching pattern was examined based on the order of the four major branches: the vertebral artery (VT), costocervical trunk (CCT), superficial cervical artery (SC), and internal thoracic artery (IT). Results: In most cases (88.6%), the BCT branched off from the left common carotid artery and terminated in the right common carotid and right subclavian arteries. In the remaining cases (11.4%), the BCT formed a bicarotid trunk. The SB exhibited various branching patterns, with 26 observed types. Based on the branching order of the four major branches, we identified the main branching pattern, in which the VT branched first (98.6%), the CCT branched second (81.9%), the SC branched third (62.5%), and the IT branched fourth (52.8%). Conclusions: The AA branching pattern in raccoon dogs exhibited various branching patterns with both similarities and differences compared to other carnivores.

Keywords

Acknowledgement

The authors express their gratitude to the Jeonbuk Wildlife Rescue Center and Kangwon Wildlife Rescue Center for providing the raccoon dog carcasses.

References

  1. Kim IS, Yang HH, Tae HJ, Na IJ, Leem HS, Ahn DC. Branching patterns of the subclavian arteries in German Shepherd dogs. Anat Histol Embryol. 2010;39(6):529-533. https://doi.org/10.1111/j.1439-0264.2010.01025.x
  2. Jang YJ, Sim J, Lee Y, Ahn D. Morphology of aortic arch branching patterns in the Eurasian Otter (Lutra lutra, Linnaeus, 1758). J Vet Med Sci. 2023;85(4):399-406. https://doi.org/10.1292/jvms.22-0517
  3. Gonzalez VH, Ball S, Cramer R, Smith A. Anatomical and morphometric variations in the arterial system of the domestic cat. Anat Histol Embryol. 2015;44(6):428-432. https://doi.org/10.1111/ahe.12154
  4. Oliveira RE, Araujo Junior HN, Costa HS, Oliveira GB, Moura CE, Oliveira DJ, et al. Collateral arteries of the aortic arch in Mongolian gerbil (Meriones unguiculatus). Acta Sci Vet. 2018;46(1):8.
  5. Nourinezhad J, Ranjbar R, Rostamizadeh V, Tabrizinejad MN, Hallak A, Janeczek M. Morphology of the pattern of branching of the aortic arch (Arcus aortae) in Syrian hamsters (Mesocricetus auratus). Vet Res Commun. 2023;47(1):51-60.
  6. Garis CF. Branches of the aortic arch in 153 rhesus monkeys (second series). Anat Rec. 1938;70(3):251-262.  https://doi.org/10.1002/ar.1090700303
  7. Ghoshal NG. Porcine heart and arteries. In: Getty R, editor. Sisson and Grossman's the Anatomy of the Domestic Animals. 5th ed. Philadelphia: W.B. Saunders; 1975, 1036-1042.
  8. Ghoshal NG. Equine heart and arteries. In: Getty R, editor. Sisson and Grossman's the Anatomy of the Domestic Animals. 5th ed. Philadelphia: W.B. Saunders; 1975, 554-618.
  9. Ahn DC, Kim HC, Tae HJ, Kang HS, Kim NS, Park SY, et al. Branching pattern of aortic arch in the Korean water deer. J Vet Med Sci. 2008;70(10):1051-1055. https://doi.org/10.1292/jvms.70.1051
  10. Ghoshal NG. Ruminant heart and arteries. In: Getty R, editor. Sisson and Grossman's the Anatomy of the Domestic Animals. 5th ed. Philadelphia: W.B. Saunders; 1975, 960-1023.
  11. Al Aiyan A, Balan R. Mapping the branching pattern of the middle cerebral artery in the camel (Camelus dromedarius): a comprehensive anatomical analysis. Front Vet Sci. 2023;10:1224197.
  12. Parsons FG. On the arrangement of the branches of the mammalian aortic arch. J Anat Physiol. 1902;36(Pt 4):389-399.
  13. Smith BJ. Canine Anatomy. 1st ed. Philadelphia: Lippincott Williams & Wilkins; 1999, 349-357.
  14. Pasquini C, Spurgeon T, Pasquini S. Anatomy of Domestic Animals: Systemic and Regional Approach. 10th ed. Pilot Point: Sudz Publishing; 2003, 408-421.
  15. Adams DR. Canine Anatomy: A Systemic Study. 4th ed. Iowa: Iowa State Press; 2004, 267-298.
  16. Konig HE, Ruberte J, Liebich HG. Organs of the cardiovascular system (systema cardiovasculare). In: Konig HE, Liebich HG, editors. Veterinary Anatomy of Domestic Mammals: Textbook and Colour Atlas. 7th ed. Stuttgart: Georg Thieme Verlag; 2020, 471-500
  17. Hermanson JW, de Lahunta A, Evans HE. Miller and Evans' Anatomy of the Dog. 5th ed. St. Louis: Elsevier Saunders; 2020, 495-581.
  18. Drabek CM, Burns JM. Heart and aorta morphology of the deep-diving hooded seal (Cystophora cristata). Can J Zool. 2002;80(11):2030-2036. https://doi.org/10.1139/z02-181
  19. Smodlaka H, Henry RW, Reed RB. Macroscopic anatomy of the great vessels and structures associated with the heart of the ringed seal (Pusa hispida). Anat Histol Embryol. 2009;38(3):161-168. https://doi.org/10.1111/j.1439-0264.2008.00896.x
  20. Ahn DC, Tae HJ, Kim IS. Morphological patterns of the origin of the common carotid artery in German shepherd dogs. Indian Vet J. 2010;87(6):587-590.
  21. More S, Watson A, Stein LE. Bicarotid trunk in the domestic cat. Anat Histol Embryol. 2016;45(5):350-356. https://doi.org/10.1111/ahe.12202
  22. Lima AR, Souza DC, Carmo DC, Santos JT, Branco E. Ramos colaterais do arco aortico e suas principais ramificacoes no cachorro-do-mato (Cerdocyon thous). Pesqui Vet Bras. 2016;36(7):647-651. https://doi.org/10.1590/S0100-736X2016000700015
  23. Raven HC. Notes on the anatomy of the viscera of the giant panda (Ailuropoda melanoleuca). Am Mus Novit. 1936;877:1-23.
  24. Chawangwongsanukun R, Darawiroj D, Wongtawan T. New branching patterns of the subclavian arteries found in Thai native dogs. J Appl Anim Sci. 2019;12(3):41-55.
  25. Pols S, Henneberg M, Norris R. Cranial arterial patterning in greyhounds: another case of internal intraspecific variation. Anat Histol Embryol. 2016;45(3):161-172. https://doi.org/10.1111/ahe.12182
  26. Budras KD, McCarthy PH, Fricke W, Richter R. Anatomy of the Dog. 5th ed. Hannover: Schlutersche; 2007, 38-49.
  27. Ghoshal NG. Carnivore heart and arteries. In: Getty R, editor. Sisson and Grossman's the Anatomy of the Domestic Animals. 5th ed. Philadelphia: W.B. Saunders; 1975, 1594-1651.
  28. Nickel R, Schummer A, Seiferle E. The Anatomy of the Domestic Animals, Vol. 3, the Circulatory System, the Skin, and the Cutaneous Organs of the Domestic Mammals. 1st ed. Berlin and Hamburg: Verlag Paul Parey: 1981, 71-77.
  29. Pongkan W, Banjongkankul W, Ketyungyuenwong P, Kongtueng P, Buddhachat K, Nganvongpanit K. New findings of branching variations in subclavian arteries and supra-aortic arteries in Felis catus. Anat Sci Int. 2020;95(4):440-454.
  30. Sun W, Yang Y, Li GY. The complete mitochondrial genome of the raccoon dogs (Canidae: Nyctereutes ussurienusis) and intraspecific comparison of three Asian raccoon dogs. Mitochondrial DNA B Resour. 2019;4(1):670-671. https://doi.org/10.1080/23802359.2017.1419081
  31. Hong Y, Lee H, Kim KS, Min MS. Phylogenetic relationships between different raccoon dog (Nyctereutes procyonoides) populations based on four nuclear and Y genes. Genes Genomics. 2020;42(9):1075-1085. https://doi.org/10.1007/s13258-020-00972-2
  32. Brudnicki W, Wiland C, Jablonski R. Basilar arteries of the brain in raccoon dog (Nyctereutes procyonoides (Gray, 1834)). Arch Vet Pol. 1994;34(1-2):141-147.
  33. Fujiwara S, Suwa F. On the facial artery of the raccoon dog (Nyctereutes procyonoides viverrinus Temminck). Okajimas Folia Anat Jpn. 1991;68(2-3):81-93. https://doi.org/10.2535/ofaj1936.68.2-3_81
  34. Skoczylas B, Brudnicki W, Kirkillo-Stacewicz K, Nowicki W, Wach J. Telencephalon vascularity in raccoon dog (Nyctereutes proteyonoides Grey 1834). Electron J Pol Agric Univ. 2015;18(1):4.
  35. Singh B. The thorax of the dog and cat. In: Singh B, editor. Dyce, Sack, and Wensing's Textbook of Veterinary Anatomy. 5th ed. St. Louis: Elsevier Saunders; 2018, 403-417.
  36. De Garis CF, Black IH, Riemenschneider EA. Patterns of the aortic arch in American white and negro stocks, with comparative notes on certain other mammals. J Anat. 1933;67(Pt 4):599-619.
  37. McGeady TA, Quinn PJ, Fitzpatrick ES, Ryan MT, Kilroy D, Lonergan P. Veterinary Embryology. 2nd ed. Chichester: Wiley Blackwell; 2017, 119-147.
  38. Santilli RA, Porteiro Vazquez DM, Gerou-Ferriani M, Lombardo SF, Perego M. Development and assessment of a novel precordial lead system for accurate detection of right atrial and ventricular depolarization in dogs with various thoracic conformations. Am J Vet Res. 2019;80(4):358-368. https://doi.org/10.2460/ajvr.80.4.358
  39. Ahn S, Lee M, Shin W, Han Y, Bae S, Choi SY, et al. Radiographic measurement of vertebral heart scale in Korean wild raccoon dogs (Nyctereutes procyonoides koreensis). J Zoo Wildl Med. 2023;53(4):817-822.