DOI QR코드

DOI QR Code

설비 결함 식별 최적화를 위한 오토인코더 기반 N 분할 주파수 영역 이상 탐지

Autoencoder Based N-Segmentation Frequency Domain Anomaly Detection for Optimization of Facility Defect Identification

  • 박기창 ((주)리쉐니에 제조지능화기술연구소 ) ;
  • 이용관 (한국공학대학교 그랜드ICT연구센터)
  • 투고 : 2023.03.10
  • 심사 : 2024.02.26
  • 발행 : 2024.03.31

초록

제조 분야 설비 예지보전을 위해서 진동, 전류, 온도 등 물리 데이터를 기반으로 설비 이상을 탐지하는 인공지능 학습 모델이 활용되고 있다. 설비 결함, 고장 등 설비 이상 유형은 매우 다양하므로, 주로 오토인코더 기반 비지도 학습 모델을 이용한 이상 탐지 방법이 적용되고 있다. 설비 상태의 정상, 비정상 여부는 오토인코더의 재구성 오차를 이용해 효과적으로 분류할 수 있지만, 설비 이상의 구체적인 상태를 식별하는 데 한계가 있다. 설비 불균형, 정렬 불량, 고정 불량 등 설비 이상 상황 발생 시, 설비 진동 주파수는 특정 영역에서 정상 상태와 다른 패턴을 나타낸다. 본 논문에서는 전체 진동 주파수 범위를 N개 영역으로 나누어 이상 탐지를 수행하는 N 분할 이상 탐지 방법을 제시하였다. 압축기의 진동 데이터를 이용해 주파수와 강도를 달리한 9종의 이상 데이터를 대상으로 실험한 결과, N 분할을 적용하였을 때 더 높은 이상 탐지 성능을 나타냈다. 제안 방법은 설비 이상 탐지 이후, 설비 이상 구체화에 활용될 수 있다.

Artificial intelligence models are being used to detect facility anomalies using physics data such as vibration, current, and temperature for predictive maintenance in the manufacturing industry. Since the types of facility anomalies, such as facility defects and failures, anomaly detection methods using autoencoder-based unsupervised learning models have been mainly applied. Normal or abnormal facility conditions can be effectively classified using the reconstruction error of the autoencoder, but there is a limit to identifying facility anomalies specifically. When facility anomalies such as unbalance, misalignment, and looseness occur, the facility vibration frequency shows a pattern different from the normal state in a specific frequency range. This paper presents an N-segmentation anomaly detection method that performs anomaly detection by dividing the entire vibration frequency range into N regions. Experiments on nine kinds of anomaly data with different frequencies and amplitudes using vibration data from a compressor showed better performance when N-segmentation was applied. The proposed method helps materialize them after detecting facility anomalies.

키워드

과제정보

이 논문은 과학기술정보통신부의 재원으로 정보통신기획평가원의 지원을 받아 수행된 지역지능화혁신인재양성사업(IITP-2024-2020-0-01741, 50%)과 중소벤처기업부의 재원으로 중소기업기술정보진흥원의 지원을 받아 수행된 스마트제조혁신 R&D 지원사업 연구 결과로 수행되었음(RS-2022-00141076, 50%).

참고문헌

  1. Z. M. Cinar, A. Abdussalam Nuhu, Q. Zeeshan, O. Korhan, M. Asmael, and B. Safaei, "Machine learning in predictive maintenance towards sustainable smart manufacturing in industry 4.0," Sustainability, Vol.19, No.19, 2020. DOI: 10.3390/su12198211 
  2. S. Namuduri, B. N. Narayanan, V. S. P. Davuluru, L. Burton, and S. Bhansali, "Review-deep learning methods for sensor based predictive maintenance and future perspectives for electrochemical sensors," Journal of The Electrochemical Society, Vol.167, No.3, 2020. DOI: 10.1149/1945-7111/ab67a8 
  3. K. Park and Y. Lee, "Anomaly detection in combined driving system based on unsupervised learning," Journal of the Korean Society for Precision Engineering, Vol.40, No.11, 2023. DOI: 10.7736/JKSPE.023.068 
  4. Y. K. Lee, S. Lee, and S. H. Kim, "Real-time defect monitoring of laser micro-drilling using reflective light and machine learning models," International Journal of Precision Engineering and Manufacturing, Vol.25, 2024. DOI: 10.1007/s12541-023-00849-w 
  5. M. Pech, J. Vrchota, and J. Bednar, "Predictive maintenance and intelligent sensors in smart factory," Sensors, Vol.21, No.4, 2021. DOI: 10.3390/s21041470 
  6. N. Azeem and Y. Xiaoqing, "Experimental study on the Condition Monitoring of Shaft Unbalance by using Vibrations Spectrum and phase Analysis," in Proceedings of the Condition Monitoring and Diagnosis, 2018. DOI: 10.1109/CMD.2018.8535737 
  7. N. Azeem, X. Yuan, H. Raza, and I. Urooj, "Experimental condition monitoring for the detection of misaligned and cracked shafts by order analysis," Advances in Mechanical Engineering, Vol.11, No.5, 2019. DOI: 10.1177/1687814019851307 
  8. D. Mohamed, B. Rania, and H. Meftah, "Detection of unbalance and looseness faults in a ventilation turbine using vibration signature analysis," IOP Conference Series: Materials Science and Engineering, Vol.1244, No.1, 2022. DOI: 10.1088/1757-899X/1244/1/012022 
  9. S. A. Mohammed, N. M. Ghazaly, and J. Abdo, "Fault diagnosis of crack on gearbox using vibration-based approaches," Symmetry, Vol.14, 2022. DOI: 10.3390/sym14020417 
  10. O. Mey, W. Neudeck, A. Schneider, and O. Enge-Rosenblatt, "Machine learning-based unbalance detection of a rotating shaft using vibration data," arXiv preprint, 2020. DOI: 10.48550/arXiv.2005.12742 
  11. R. E. Bouisfi, L. E. Menzhi, and X. Chiementin, "Supervised classification of induction motors faults," in Proceedings of the International Conference on Energy and Green Computing, 2021. DOI: 10.1051/e3sconf/202233600051 
  12. T. Chen, X. Liu, B. Xia, W. Wang, and Y. Lai, "Unsupervised anomaly detection of industrial robots using sliding-window convolutional variational autoencoder," IEEE Access, Vol.8, pp.47072-47081, 2020. DOI: 10.1109/ACCESS.2020.2977892 
  13. S. Givnan, C. Chalmers, P. Fergus, S. Ortega-Martorell, and T. Whalley, "Anomaly detection using autoencoder reconstruction upon industrial motors," Sensors, Vol.22, 2022. DOI: 10.3390/s22093166 
  14. Y. Huang, C. -H. Chen and C. -J. Huang, "Motor fault detection and feature extraction using RNN-Based variational autoencoder," IEEE Access, Vol.7, pp.139086-139096, 2019. DOI: 10.1109/ACCESS.2019.2940769 
  15. T. Tziolas, K. Papageorgiou, T. Theodosiou, E. Papageorgiou, T. Mastos, and A. Papadopoulos, "Autoencoders for anomaly detection in an industrial multivariate time series dataset," Engineering Proceedings, Vol.18, 2022. DOI: 10.3390/engproc2022018023 
  16. S. Zhang, F. Ye, B. Wang, and T. G. Habetler, "Semi-supervised learning of bearing anomaly detection via deep variational autoencoders," arXiv preprint, 2019. DOI: 10.48550/arXiv.1912.01096 
  17. I. Thoidis, M. Giouvanakis, and G. Papanikolaou, "Semi-supervised machine condition monitoring by learning deep discriminative audio features," Electronics, Vol.10, 2021. DOI: 10.3390/electronics10202471 
  18. O. Yilmaz, M. Aksoy, and Z. Kesilmis, "Misalignment fault detection by wavelet analysis of vibration signals," International Advanced Researches and Engineering Journal, Vol.3, No.3, 156-163, 2019. DOI: 10.35860/iarej.451528 
  19. B. Cahyono, D. Priyanta, and F. R. F. Ramadhan, "Vibration spectrum analysis for indicating damage on turbine and steam generator amurang unit 1," International Journal of Marine Engineering Innovation and Research, Vol.2, 2017. DOI: 10.12962/j25481479.v2i1.2688 
  20. S. Ahmad, K. Styp-Rekowski, S. Nedelkoski, and O. Kao, "Autoencoder-based condition monitoring and anomaly detection method for rotating machines," in Proceedings of IEEE International Conference on Big Data, 2020. 
  21. I. Ahmed, M. Ahmad, A. Chehri, and G. Jeon, "A Smart-Anomaly-Detection System for Industrial Machines Based on Feature Autoencoder and Deep Learning," Micro-machines, Vol.14, 2023. DOI: 10.3390/mi14010154 
  22. M. Rao, M. J. Zuo, and Z. Tian, "A speed normalized autoencoder for rotating machinery fault detection under varying speed conditions," Mechanical Systems and Signal Processing, Vol.189, 2023. DOI: 10.1016/j.ymssp.2023.110109 
  23. O. Serradilla, E. Zugasti, J. Ramirez de Okariz, J. Rodriguez, and U. Zurutuza, "Adaptable and explainable predictive maintenance: Semi-supervised deep learning for anomaly detection and diagnosis in press machine data," Applied Sciences, Vol.11, 2021. DOI: 10.3390/app11167376 
  24. T. Tziolas, K. Papageorgiou, T. Theodosiou, E. Papageorgiou, T. Mastos, and A. Papadopoulos, "Autoencoders for anomaly detection in an industrial multivariate time series dataset," Engineering Proceedings, Vol.18, 2022. DOI: 10.3390/engproc2022018023 
  25. M. Z. Naser and A. Alavi, "Insights into performance fitness and error metrics for machine learning," arXiv preprint, 2020. DOI: 10.48550/arXiv.2006.00887