DOI QR코드

DOI QR Code

변화탐지와 회상 과제에 기초한 시각작업기억의 통합적 객체 표상 검증

Integrated Object Representations in Visual Working Memory Examined by Change Detection and Recall Task Performance

  • Inae Lee (Department of Psychology, Chung-Ang University) ;
  • Joo-Seok Hyun (Department of Psychology, Chung-Ang University)
  • 투고 : 2023.12.20
  • 심사 : 2024.01.12
  • 발행 : 2024.03.31

초록

본 연구는 두 가지 이론적 모델인 통합된 객체 모형과 특장 병렬-독립 저장 모형을 검증함으로써 시각작업기억 표상의 특성을 조사하였다. 실험 I에서 참가자들은 색상 사각형, 방위 막대 또는 두 가지 모두로 구성된 배열을 기억한 뒤 이를 토대로 변화탐지과제를 수행했다. 단일 특징 조건에서 기억배열은 하나의 특징(방위 또는 색상)으로만 구성된 반면, 두 가지 특징 조건은 둘 모두를 포함했다. 두 조건간 변화탐지 수행의 차이는 없었으며 이는 병렬-독립 저장 모형보다는 통합된 객체 모형을 지지한다. 실험 II에서는 이등변삼각형의 방위, 색상 사각형 또는 두 특징 모두로 구성된 기억배열을 대상으로 회상과제가 실시되었으며, 단일 특징과 두 가지 특징 조건 간 회상 수행이 비교되었다. 두 조건 간 회상 정확도에는 차이가 없었으나 표상 선명도와 추측반응에 대한 분석 결과는 강한 객체 모형보다는 약한 객체 모형을 시사했다. 본 연구의 결과는 시각작업기억의 표상 특성을 둘러싼 현시점의 논쟁에 있어서 병렬-독립 저장 모형이 아닌 통합된 객체 모형의 우세를 지지한다.

This study investigates the characteristics of visual working memory (VWM) representations by examining two theoretical models: the integrated-object and the parallel-independent feature storage models. Experiment I involved a change detection task where participants memorized arrays of either orientation bars, colored squares, or both. In the one-feature condition, the memory array consisted of one feature (either orientations or colors), whereas the two-feature condition included both. We found no differences in change detection performance between the conditions, favoring the integrated object model over the parallel-independent feature storage model. Experiment II employed a recall task with memory arrays of isosceles triangles' orientations, colored squares, or both, and one-feature and two-feature conditions were compared for their recall performance. We found again no clear difference in recall accuracy between the conditions, but the results of analyses for memory precision and guessing responses indicated the weak object model over the strong object model. For ongoing debates surrounding VWM's representational characteristics, these findings highlight the dominance of the integrated object model over the parallel independent feature storage model.

키워드

과제정보

This research was supported by the Chung-Ang University Research Scholarship Grants in 2022. (2022)

참고문헌

  1. Adam, K. C., Vogel, E. K., & Awh, E. (2017). Clear evidence for item limits in visual working memory. Cognitive psychology, 97, 79-97.
  2. Alvarez, G. A., & Cavanagh, P. (2004). The capacity of visual short-term memory is set both by visual information load and by number of objects. Psychological science, 15(2), 106-111.
  3. Awh, E., Barton, B., & Vogel, E. K. (2007). Visual working memory represents a fixed number of items regardless of complexity. Psychological science, 18(7), 622-628.
  4. Awh, E., Dhaliwal, H., Christensen, S., & Matsukura, M. (2001). Evidence for two components of object-based selection. Psychological Science, 12(4), 329-334.
  5. Baddeley, A. D., & Hitch, G. J. (1994). Developments in the concept of working memory. Neuropsychology, 8(4), 485.
  6. Barton, B., Ester, E. F., & Awh, E. (2009). Discrete resource allocation in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 35(5), 1359.
  7. Bays, P. M., Catalao, R. F., & Husain, M. (2009). The precision of visual working memory is set by allocation of a shared resource. Journal of vision, 9(10), 7-7.
  8. Bays, P. M. (2015). Spikes not slots: noise in neural populations limits working memory. Trends in cognitive sciences, 19(8), 431-438. https://doi.org/10.1016/j.tics.2015.06.004
  9. Bays, P. M., & Taylor, R. (2018). A neural model of retrospective attention in visual working memory. Cognitive Psychology, 100, 43-52.
  10. Brady, T. F., Konkle, T., & Alvarez, G. A. (2011). A review of visual memory capacity: Beyond individual items and toward structured representations. Journal of vision, 11(5), 4-4.
  11. Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and brain sciences, 24(1), 87-114. https://doi.org/10.1017/S0140525X01003922
  12. Donkin, C., Nosofsky, R. M., Gold, J. M., & Shiffrin, R. M. (2013). Discrete-slots models of visual working-memory response times. Psychological Review, 120(4), 873.
  13. Dube, B., Emrich, S. M., & Al-Aidroos, N. (2017). More than a filter: Feature-based attention regulates the distribution of visual working memory resources. Journal of Experimental Psychology: Human Perception and Performance, 43(10), 1843.
  14. Fougnie, D., & Alvarez, G. A. (2011). Object features fail independently in visual working memory: Evidence for a probabilistic feature-store model. Journal of vision, 11(12), 3-3.
  15. Gajewski, D. A., & Brockmole, J. R. (2006). Feature bindings endure without attention: Evidence from an explicit recall task. Psychonomic Bulletin & Review, 13(4), 581-587.
  16. Hollingworth, A. (2003). Failures of retrieval and comparison constrain change detection in natural scenes. Journal of Experimental Psychology: Human Perception and Performance, 29(2), 388.
  17. Hyun, J. S., Woodman, G. F., Vogel, E. K., Hollingworth, A., & Luck, S. J. (2009). The comparison of visual working memory representations with perceptual inputs. Journal of Experimental Psychology: Human Perception and Performance, 35(4), 1140.
  18. Jiang, Y., Chun, M. M., & Olson, I. R. (2004). Perceptual grouping in change detection. Perception & Psychophysics, 66, 446-453.
  19. Jiang, Y., Olson, I. R., & Chun, M. M. (2000). Organization of visual short-term memory. Journal of Experimental Psychology: Learning, memory, and cognition, 26(3), 683.
  20. Kahana, M. J., & Sekuler, R. (2002). Recognizing spatial patterns: A noisy exemplar approach. Vision research, 42(18), 2177-2192.
  21. Kim, D. G., & Hyun, J. S. (2012). The Effect of Memory Demand for The Same of Different Features across Items in Visual Working Memory on Their Storage Performance. The Korean Journal of Cognitive and Biological Psychology, 24(4), 393-410. https://doi.org/10.22172/COGBIO.2012.24.4.005
  22. Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279-281.
  23. Luck, S. J., & Vogel, E. K. (2013). Visual working memory capacity: from psychophysics and neurobiology to individual differences. Trends in cognitive sciences, 17(8), 391-400.
  24. Magnussen, S., Greenlee, M. W., & Thomas, J. P. (1996). Parallel processing in visual short-term memory. Journal of Experimental Psychology: Human Perception and Performance, 22(1), 202.
  25. Markov, Y. A., Tiurina, N. A., & Utochkin, I. S. (2019). Different features are stored independently in visual working memory but mediated by object-based representations. Acta psychologica, 197, 52-63.
  26. Murray, A. M., Nobre, A. C., Clark, I. A., Cravo, A. M., & Stokes, M. G. (2013). Attention restores discrete items to visual short-term memory. Psychological science, 24(4), 550-556.
  27. Olson, I. R., & Jiang, Y. (2002). Is visual short-term memory object based? Rejection of the "strong-object" hypothesis. Perception & psychophysics, 64, 1055-1067.
  28. Pashler, H. (1988). Familiarity and visual change detection. Perception & psychophysics, 44, 369-378.
  29. Rouder, J. N., Morey, R. D., Morey, C. C., & Cowan, N. (2011). How to measure working memory capacity in the change detection paradigm. Psychonomic bulletin & review, 18, 324-330.
  30. Sone, H., Kang, M. S., Li, A. Y., Tsubomi, H., & Fukuda, K. (2021). Simultaneous estimation procedure reveals the object-based, but not space-based, dependence of visual working memory representations. Cognition, 209, 104579.
  31. Suchow, J. W., Brady, T. F., Fougnie, D., & Alvarez, G. A. (2013). Modeling visual working memory with the MemToolbox. Journal of vision, 13(10), 9-9.
  32. Suchow, J. W., Fougnie, D., Brady, T. F., & Alvarez, G. A. (2014). Terms of the debate on the format and structure of visual memory. Attention, Perception, & Psychophysics, 76, 2071-2079.
  33. Vogel, E. K., Woodman, G. F., & Luck, S. J. (2001). Storage of features, conjunctions, and objects in visual working memory. Journal of experimental psychology: human perception and performance, 27(1), 92.
  34. Wilken, P., & Ma, W. J. (2004). A detection theory account of change detection. Journal of vision, 4(12), 11-11.
  35. Woodman, G. F., Vecera, S. P., & Luck, S. J. (2003). Perceptual organization influences visual working memory. Psychonomic bulletin & review, 10(1), 80-87.
  36. Xu, Y. (2001). Limitations in object-based feature encoding in visual short-term memory. Journal of Vision, 1(3), 125-125. https://doi.org/10.1167/1.3.125
  37. Xu, Y. (2010). The neural fate of task-irrelevant features in object-based processing. Journal of Neuroscience, 30(42), 14020-14028. https://doi.org/10.1523/JNEUROSCI.3011-10.2010
  38. Xu, Y., & Chun, M. M. (2006). Dissociable neural mechanisms supporting visual short-term memory for objects. Nature, 440(7080), 91-95.
  39. Ye, C., Liang, T., Zhang, Y., Xu, Q., Zhu, Y., & Liu, Q. (2020). The two-stage process in visual working memory consolidation. Scientific reports, 10(1), 13564.
  40. Zhang, W., & Luck, S. J. (2008). Discrete fixed-resolution representations in visual working memory. Nature, 453(7192), 233-235.