DOI QR코드

DOI QR Code

목이버섯 배지 오염 곰팡이균의 분리, 동정 및 생물학적 방제제 선발

Isolation and Identification of Competitive Fungi on Medium for Black Wood Ear Mushroom in Korea and In Vitro Selection of Potential Biocontrol Agents

  • 김서연 (순천대학교 생명산업과학대학 식물의학과) ;
  • 조미주 (순천대학교 생명산업과학대학 식물의학과) ;
  • 안선민 (순천대학교 생명산업과학대학 식물의학과) ;
  • 박지윤 (순천대학교 생명산업과학대학 식물의학과) ;
  • 박지원 (순천대학교 생명산업과학대학 식물의학과) ;
  • 홍성국 (순천대학교 생명산업과학대학 식물의학과) ;
  • 김지우 (순천대학교 생명산업과학대학 식물의학과) ;
  • 차주훈 (삼광버섯영농조합) ;
  • 노유진 (순천대학교 생명산업과학대학 식물의학과) ;
  • 김다솜 (국립생물자원관) ;
  • 전미진 (국립생물자원관) ;
  • 지원재 (국립생물자원관) ;
  • 박숙영 (순천대학교 생명산업과학대학 식물의학과)
  • Seoyeon Kim (Department of Plant Medicine, College of Life Science and Natural Resources, Sunchon National University) ;
  • Miju Jo (Department of Plant Medicine, College of Life Science and Natural Resources, Sunchon National University) ;
  • Sunmin An (Department of Plant Medicine, College of Life Science and Natural Resources, Sunchon National University) ;
  • Jiyoon Park (Department of Plant Medicine, College of Life Science and Natural Resources, Sunchon National University) ;
  • Jiwon Park (Department of Plant Medicine, College of Life Science and Natural Resources, Sunchon National University) ;
  • Sungkook Hong (Department of Plant Medicine, College of Life Science and Natural Resources, Sunchon National University) ;
  • Jiwoo Kim (Department of Plant Medicine, College of Life Science and Natural Resources, Sunchon National University) ;
  • Juhoon Cha (Samkwang Mushroom Farmer's Association) ;
  • Yujin Roh (Department of Plant Medicine, College of Life Science and Natural Resources, Sunchon National University) ;
  • Da Som Kim (Species Diversity Research Division, Biodiversity Research Department, National Institute of Biological Resources) ;
  • Mi jin Jeon (Species Diversity Research Division, Biodiversity Research Department, National Institute of Biological Resources) ;
  • Won-Jae Chi (Species Diversity Research Division, Biodiversity Research Department, National Institute of Biological Resources) ;
  • Sook-Young Park (Department of Plant Medicine, College of Life Science and Natural Resources, Sunchon National University)
  • 투고 : 2023.11.15
  • 심사 : 2024.02.07
  • 발행 : 2024.03.31

초록

목이버섯(A. auricula-judae)은 중국, 일본, 한국에서 경제적으로 중요한 버섯이다. 인공 배지에서 목이버섯을 재배할 경우 자연적으로 나무에서 키울 때보다 시간과 비용 면에서 더 효율적이다. 그러나 배지 재배의 경우 빠르게 자라는 곰팡이에 감염할 경우 성장이 느린 목이버섯이 배지 경쟁에서 밀려나 경제적 손실이 발생한다. 이 연구에서는 전라남도 장흥과 순천에서 목이버섯 재배용 배지에 감염한 푸른곰팡이들을 분리 및 동정하였다. 총 54개의 균주를 수집한 뒤 ITS 염기서열 분석 및 형태학적 동정을 수행하였다. 총 54개 균주 중 Trichoderma spp.가 92.6%, Penicillium spp.가 5.6%, Talaromyces sp.가 1.8%였다. 친환경 방제제를 선발하기 위해 우리는 6개의 Streptomyces spp. 균주를 선발하고 Benomyl을 대조군으로 사용하여 분리균주인 Trichoderma spp.와 Penicillium spp.에 대한 길항성 검정을 수행하였다. 이 중 Streptomyces sp. 203-3이 Trichoderma spp.와 Penicillium spp.에 가장 높은 균사저지 효과를 보여, 목이버섯 배지에 감염하는 곰팡이에 대한 잠재적인 방제제로의 가능성을 보였다.

Black wood ear mushroom (Auricularia auricula-judae) is one of the most economically important mushrooms in China, Japan, and Korea. The cultivation of wood ear mushrooms on artificial substrates is more efficient in terms of time and cost compared with their natural growth on trees. However, if the substrate cultivation is infected by fast-growing fungi, the relatively slow-growing ear mushroom will be outcompeted, leading to economic losses. In this study, we investigated the competitive fungal isolates from substrates infected with fast-growing fungi for the cultivation of ear mushrooms in Jangheung and Sunchon, Korea. We collected 54 isolates and identified them by sequencing their internal transcribed spacer region with morphological identification. Among the isolates, the dominant isolates were Trichoderma spp. (92.6%), Penicillium spp. (5.6%), and Talaromyces sp. (1.8%). To find an appropriate eco-friendly biocontrol agent, we used five Streptomyces spp. and Benomyl, as controls against Trichoderma spp. and Penicillium spp. Among the six Streptomyces spp., Streptomyces sp. JC203-3 effectively controlled the fungi Trichoderma spp. and Penicillium spp., which pose a significant problem for the substrates of black wood ear mushrooms. This result indicated that this Streptomyces sp. JC203-3 can be used as biocontrol agents to protect against Trichoderma and Penicillium spp.

키워드

과제정보

This paper was supported by National Institute of Biological Resources (grant number: NIBR202304106).

참고문헌

  1. Bernas, E., Jaworska, G. and Lisiewska, Z. 2006. Edible mushrooms as a source of valuable nutritive constituents. Acta. Sci. Pol. Technol. Aliment. 5: 5-20.
  2. Bonaterra, A., Badosa, E., Daranas, N., Frances, J., Rosello, G. and Montesinos, E. 2022. Bacteria as biological control agents of plant diseases. Microorganisms 10: 1759.
  3. Boukaew, S., Chuenchit, S. and Petcharat, V. 2011. Evaluation of Streptomyces spp. for biological control of Sclerotium root and stem rot and Ralstonia wilt of chili pepper. Bio. Control. 56: 365-374. https://doi.org/10.1007/s10526-010-9336-4
  4. Chamberlain, K. and Crawford, D. L. 1999. In vitro and in vivo antagonism of pathogenic turfgrass fungi by Streptomyces hygroscopicus strains YCED9 and WYE53. J. Ind. Microbiol. Biotechnol. 23: 641-646. https://doi.org/10.1038/sj.jim.2900671
  5. Chen, P. C. and Hou, H. H. 1978. Tremella fuciformis, in the biology and cultivation of edible mushroom. Academic Press, New York, NY, USA. 629 pp.
  6. Chi, M.-H., Park, S.-Y. and Lee, Y.-H. 2009. A quick and safe method for fungal DNA extraction. Plant Pathol. J. 25: 108-111. https://doi.org/10.5423/PPJ.2009.25.1.108
  7. Clemons, G. P. and Sisler, H. D. 1971. Localization of the site of action of a fungitoxic benomyl derivative. Pestic. Biochem. Physiol. 1: 32-43. https://doi.org/10.1016/0048-3575(71)90209-4
  8. Davidse, L. C. 1973. Antimitotic activity of methyl benzimidazol-2-yl carbamate (MBC) in Aspergillus nidulans. Pestic. Biochem. Physiol. 3: 317-325. https://doi.org/10.1016/0048-3575(73)90030-8
  9. Gardes, M. and Bruns, T. D. 1993. ITS primers with enhanced specificity for basidiomycetes--application to the identification of mycorrhizae and rusts. Mol. Ecol. 2: 113-118. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x
  10. Gezgin, Y., Guralp, G., Barlas, A. B. and Eltem, R. 2023. Morphological and molecular identification of Trichoderma isolates used as biocontrol agents by DNA barcoding. Eur. J. Biol. 82: 59-69. https://doi.org/10.26650/EurJBiol.2023.1279151
  11. Hammerschlag, R. S. and Sisler, H. D. 1973. Benomyl and methyl-2-benzimidazolecarbamate (MBC): biochemical, cytological and chemical aspects of toxicity to Ustilago maydis and Saccharomyces cerevesiae. Pestic. Biochem. Physiol. 3: 42-54.
  12. Houbraken, J., Seifert, K. A. and Samson, R. A. 2019. Penicillium hermansii, a new species causing smoky mould in white button mushroom production. Mycol. Prog. 18: 229-236.
  13. Kamil, D., Prameela Devi, T., Choudhary, S.P., Das, A. and Kumar, A. 2022. Genome-mediated methods to unravel the native biogeographical diversity and biosynthetic potential of Trichoderma for plant health. In: Fungal diversity, ecology and control management. Fungal Biology, eds. by V. R. Rajpal, I. Singh and S. S. Navi, pp.109-124. Springer, Singapore.
  14. Kim, M.-K., Sim, S., Choi, S.-L. and Hong, K.-P. 2019. Diversity analysis of culture-dependent fungal species isolated from the sawdust media of Lentinula edodes. J. Mushroom. 17: 179-184. (In Korean)
  15. Kim, M.-K., Sim, S.-A., Kim, A.-Y., Kwon, J.-H. and Chang, Y.-H. 2020. Characterization of green mold contamination caused by Penicillium brevicompactum in Hypsizygus marmoreus. Kor. J. Mycol. 48: 397-405. (In Koean)
  16. Kosanovic, D., Potocnik, I., Vukojevic, J., Stajic, M., Rekanovic, E., Stepanovic, M. et al. 2015. Fungicide sensitivity of Trichoderma spp. from Agaricus bisporus farms in Serbia. J. Environ. Sci. Health B. 50: 607-613. https://doi.org/10.1080/03601234.2015.1028849
  17. Kubicek, C. P., Steindorff, A. S., Chenthamara, K., Manganiello, G., Henrissat, B., Zhang, J. et al. 2019. Evolution and comparative genomics of the most common Trichoderma species. BMC Genomics 20: 485.
  18. Kunova, A., Bonaldi, M., Saracchi, M., Pizzatti, C., Chen, X. and Cortesi, P. 2016. Selection of Streptomyces against soil borne fungal pathogens by a standardized dual culture assay and evaluation of their effects on seed germination and plant growth. BMC Microbiol. 16: 272.
  19. Lee, H.-J., Yun, Y.-B., Huh, J.-H. and Kim, Y.-K. 2017. Suppression of green mold disease on oak mushroom cultivation by antifungal peptides. J. Appl. Biol. Chem. 60: 149-153. (In Korean) https://doi.org/10.3839/jabc.2017.025
  20. Liu, Y. J., Whelen, S. and Hall, B. D. 1999. Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. Mol. Biol. Evol. 16: 1799-1808. https://doi.org/10.1093/oxfordjournals.molbev.a026092
  21. Lu, H., Lou, H., Hu, J., Liu, Z. and Chen, Q. 2020. Macrofungi: a review of cultivation strategies, bioactivity, and application of mushrooms. Compr. Rev. Food Sci. Food Saf. 19: 2333-2356.
  22. Maheshwary, N. P., Naik, B. G., Chittaragi, A., Naik, M. K., Satish, K. M., Nandish, M. S. et al. 2022. Morpho-molecular characterization, diversity analysis and antagonistic activity of Trichoderma isolates against predominant soil born pathogens. Indian Phytopathol. 75: 1009-1020.
  23. O'Brien, M., Grogan, H. and Kavanagh, K. 2014. Proteomic response of Trichoderma aggressivum f. europaeum to Agaricus bisporus tissue and mushroom compost. Fungal Biol. 118: 785-791. https://doi.org/10.1016/j.funbio.2014.06.004
  24. O'Brien, M., Kavanagh, K. and Grogan, H. 2017. Detection of Trichoderma aggressivum in bulk phase III substrate and the effect of T. aggressivum inoculum, supplementation and substrate-mixing on Agaricus bisporus yields. Eur. J. Plant Pathol. 147: 199-209.
  25. Park, M. S., Bae, K. S. and Yu, S. H. 2006. Two new species of Trichoderma associated with green mold of oyster mushroom cultivation in Korea. Mycobiology 34: 111-113. https://doi.org/10.4489/MYCO.2006.34.3.111
  26. Radvanyi, D., Gere, A., Sipos, L., Kovacs, S., Jokai, Z. and Fodor, P. 2016. Discrimination of mushroom disease-related mould species based solely on unprocessed chromatograms. J. Chemom. 30: 197-202. https://doi.org/10.1002/cem.2777
  27. Rangel-Vargas, E., Rodriguez, J. A., Dominguez, R., Lorenzo, J. M., Sosa, M. E., Andres, S. C. et al. 2021. Edible mushrooms as a natural source of food ingredient/additive replacer. Foods 10: 2687.
  28. Sasic Zoric, L., Janjusevic, L., Djisalov, M., Knezic, T., Vunduk, J., Milenkovic, I. et al. 2023. Molecular approaches for detection of Trichoderma green mold disease in edible mushroom production. Biology 12: 299.
  29. Statistics Korea. 2023. URL https://kostat.go.kr/ansk/. [13 November 2023]
  30. Trejo-Estrada, S. R., Sepulveda, I. R. and Crawford, D. L. 1998. In vitro and in vivo antagonism of Streptomyces violaceusniger YCED9 against fungal pathogens of turfgrass. World J. Microbiol. Biotechnol. 14: 865-872. https://doi.org/10.1023/A:1008877224089
  31. Tu, C. and Wu, K. 1989. Properties of Jew's ear (Auricularia spp.) and silver ear (Tremella fuciformis) in Taiwan. Taiwan Agricultural Research Institute, Taichung, Taiwan.
  32. Visagie, C. M., Houbraken, J., Frisvad, J. C., Hong, S. B., Klaassen, C. H., Perrone, G. et al. 2014. Identification and nomenclature of the genus Penicillium. Stud. Mycol. 78: 343-371. https://doi.org/10.1016/j.simyco.2014.09.001
  33. White, T. J., Bruns, T., Lee, S. J. W. T. and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Proto cols: A Guide to Methods and Applications, eds. by M. A. Innis, D. H. Gelfand, J. J. Sninsky and T. J. White, pp. 315-322. Academic Press, New York, NY, USA.