DOI QR코드

DOI QR Code

Influence of loading rate on flexural performance and acoustic emission characteristics of Ultra High Performance Concrete

  • Received : 2023.07.03
  • Accepted : 2024.03.25
  • Published : 2024.03.25

Abstract

The study investigated the behavior of plain and fibered Ultra-High Performance Concrete (UHPC) beams under varying loading conditions using integrated analysis of the flexure and acoustic emission tests. The loading rate of testing is -0.25 -2 mm/min. It is observed that on increasing loading rate, flexural strength increases, and toughness decreases. The acoustic emission testing revealed that higher loading rates accelerate crack propagation. Fiber effect and matrix cracking are identified as significant contributors to the release of acoustic emission energy, with fiber rupture/failure and matrix cracking showing rate-dependent behavior. Crack classification analysis indicated that the rise angle (RA) value decreased under quasi-static loading. The average frequency (AF) value increased with the loading rate, but this trend reversed under rate-dependent conditions. K-means analysis identified distinct clusters of crack types with unique frequency and duration characteristics at different loading rates. Furthermore, the historic index and signal strength decreased with increasing loading rate after peak capacity, while the severity index increased in the post-peak zone, indicating more severe damage. The sudden rise in the historic index and cumulative signal strength indicates the possibility of several occurrences, such as the emergence of a significant crack, shifts in cracking modes, abrupt failure, or notable fiber debonding/pull-out. Moreover, there is a distinct rise in the number of AE knees corresponding to the increase in loading rate. The crack mapping from acoustic emission testing aligned with observed failure patterns, validating its use in structural health monitoring.

Keywords

Acknowledgement

The research paper is registered under the reference number CSIR-SERC-935/2022 and is generously funded by a CSIR, New Delhi grant.

References

  1. Alimirzaei, S., Barbaz-Isfahani, R., Khodaei, A., Najafabadi, M. A. and Sadighi, M. (2024), "Investigating the flexural behavior of nanomodified multi-delaminated composites using acoustic emission technique", Ultrasonic., 138, 107249. https://doi.org/10.1016/j.ultras.2024.107249.
  2. Babski, V. (2016), "Characterisation of Ultra-High Performance Fibre Reinforced Concrete (UHPFC) under tensile loading by acoustic emission and optical deformation analysis", 4th International Symposium on Ultra-High Performance Concrete and High Performance Materials (HiPerMat), Kassel, Germany.
  3. Bian, C., Wang, J.Y. and Guo, J.Y. (2021), "Damage mechanism of ultra-high performance fibre reinforced concrete at different stages of direct tensile test based on acoustic emission analysis", Constr. Build. Mater., 267, 120927. https://doi.org/10.1016/j.conbuildmat.2020.120927.
  4. Bu, J., Wu, X., Xu, H. and Chen, X. (2022), "The rate effect on fracture mechanics of dam concrete based on DIC and AE techniques", J. Strain Anal. Eng. Des., 57(6), 496-510. https://doi.org/10.1177/03093247211038131.
  5. Cao, Y., Yu, Q., Brouwers, H. and Chen, W. (2019), "Predicting the rate effects on hooked-end fiber pull-out performance from Ultra-High Performance Concrete (UHPC)", Cement Concrete Res., 120, 164-175. https://doi.org/10.1016/j.cemconres.2019.03.022.
  6. Chen, C., Chen, X. and Ning, Y. (2022), "Identification of fracture damage characteristics in ultrahigh performance cement-based composite using digital image correlation and acoustic emission techniques", Compos. Struct., 291, 115612. https://doi.org/10.1016/j.compstruct.2022.115612.
  7. Cotsovos, D. and Pavlovic, M. (2008), "Numerical investigation of concrete subjected to high rates of uniaxial tensile loading", Int. J. Impact Eng., 35(5), 319-335. https://doi.org/10.1016/j.ijimpeng.2007.03.006.
  8. Dai, F. and Xia, K. (2013), "Laboratory measurements of the rate dependence of the fracture toughness anisotropy of Barre granite", Int. J. Rock Mech. Min. Sci., 60, 57-65. https://doi.org/10.1016/j.ijrmms.2012.12.035.
  9. Dai, Q., Ng, K., Zhou, J., Kreiger, E.L. and Ahlborn, T.M. (2012), "Damage investigation of single edge notched beam tests with normal strength concrete and ultra high performance concrete specimens using acoustic emission techniques", Constr. Build. Mater., 31, 231-242. https://doi.org/10.1016/j.conbuildmat.2011.12.080.
  10. Hakeem, I.Y., Amin, M., Abdelsalam, B.A., Tayeh, B.A., Althoey, F. and Agwa, I.S. (2022), "Effects of nano-silica and micro-steel fiber on the engineering properties of ultra-high performance concrete", Struct. Eng. Mech., 82(3), 295-312. https://doi.org/10.12989/sem.2022.82.3.295.
  11. Kravchuk, R. (2017), "Acoustic emission analysis of energy dissipation mechanisms in Ultra High-Performance Fiber Reinforced Concrete", Master of Science (MS), The University of Maine.
  12. Kravchuk, R. and Landis, E.N. (2018), "Acoustic emission-based classification of energy dissipation mechanisms during fracture of fiber-reinforced ultra-high-performance concrete", Constr. Build. Mater., 176, 531-538. https://doi.org/10.1016/j.conbuildmat.2018.05.039.
  13. Lambert, D.E. and Ross, C.A. (2000), "Strain rate effects on dynamic fracture and strength", Int. J. Impact Eng., 24(10), 985-998. https://doi.org/10.1016/S0734-743X(00)00027-0.
  14. Li, S., Jensen, O.M. and Yu, Q. (2021), "Mechanism of rate dependent behaviour of ultra-high performance fibre reinforced concrete containing coarse aggregates under flexural loading", Constr. Build. Mater., 301, 124055. https://doi.org/10.1016/j.conbuildmat.2021.124055.
  15. Mansour, W., Sakr, M.A., Seleemah, A.A., Tayeh, B.A. and Khalifa, T.M. (2022), "Bond behavior between concrete and prefabricated ultra high-performance fiber-reinforced concrete (UHPFRC) plates", Struct. Eng. Mech., 81(3), 305. http://doi.org/10.12989/sem.2022.81.3.305.
  16. Murthy, A.R., Aravindan, M. and Ganesh, P. (2018), "Prediction of flexural behaviour of RC beams strengthened with ultra high performance fiber reinforced concrete", Struct. Eng. Mech., 65(3), 315-325. https://doi.org/10.12989/sem.2018.65.3.315.
  17. Ngo, T.T., Park, J.K. and Kim, D.J. (2019), "Loading rate effect on crack velocity in ultra-high-performance fiber-reinforced concrete", Constr. Build. Mater., 197, 548-558. https://doi.org/10.1016/j.conbuildmat.2018.11.241.
  18. Ohtsu, M. (2010), "Recommendation of RILEM TC 212-ACD: Acoustic emission and related NDE techniques for crack detection and damage evaluation in concrete: Test method for damage qualification of reinforced concrete beams by acoustic emission", Mater. Struct., 43(9), 1183-1186. https://doi.org/10.1617/s11527-010-9639-z
  19. Prem, P.R. and Murthy, A.R. (2016), "Acoustic emission and flexural behaviour of RC beams strengthened with UHPC overlay", Constr. Build. Mater., 123, 481-492. https://doi.org/10.1016/j.conbuildmat.2016.07.033.
  20. Prem, P.R. and Murthy, A.R. (2017), "Acoustic emission monitoring of reinforced concrete beams subjected to four-point-bending", Appl. Acoust., 117, 28-38. https://doi.org/10.1016/j.apacoust.2016.08.006.
  21. Prem, P.R., Bharatkumar, B. and Iyer, N.R. (2013), "Influence of curing regimes on compressive strength of ultra high performance concrete", Sadhana, 38(6), 1421-1431. https://doi.org/10.1016/j.jobe.2023.107401.
  22. Prem, P.R., Murthy, A.R. and Bharatkumar, B.H. (2015), "Influence of curing regime and steel fibres on the mechanical properties of UHPC", Mag. Concrete Res., 67(18), 988-1002. http://doi.org/10.1680/macr.14.00333.
  23. Prem, P.R., Murthy, A.R. and Verma, M. (2018), "Theoretical modelling and acoustic emission monitoring of RC beams strengthened with UHPC", Constr. Build. Mater., 158, 670-682. https://doi.org/10.1016/j.conbuildmat.2017.10.063.
  24. Prem, P.R., Tamilmathirajalakshmi, R., Gopal, R. and Ghodke, S.B. (2024), "Development of stress block parameters for ultra high performance concrete", Struct., 59, 105719. https://doi.org/10.1016/j.istruc.2023.105719.
  25. Prem, P.R., Verma, M. and Ambily, P. (2021a), "Damage characterization of reinforced concrete beams under different failure modes using acoustic emission", Struct., 30, 174-187. https://doi.org/10.1016/j.istruc.2021.01.007.
  26. Prem, P.R., Verma, M., Murthy, A.R. and Ambily, P. (2021b), "Smart monitoring of strengthened beams made of ultrahigh performance concrete using integrated and nonintegrated acoustic emission approach", Struct. Control Hlth. Monit., 28(5), e2704. https://doi.org/10.1002/stc.2704.
  27. Prem, P.R., Verma, M., Murthy, A.R., Rajasankar, J. and Bharatkumar, B. (2017), "Numerical and theoretical modelling of low velocity impact on uhpc panels", Struct. Eng. Mech., 63(2), 207-215. https://doi.org/10.12989/sem.2017.63.2.207.
  28. Ravichandran, D., Prem, P.R., Kaliyavaradhan, S.K. and Ambily, P. (2022), "Influence of fibers on fresh and hardened properties of Ultra High Performance Concrete (UHPC)A review", J. Build. Eng., 57, 104922. https://doi.org/10.1016/j.jobe.2022.104922.
  29. Rossi, P., Van Mier, J.G., Toutlemonde, F., Le Maou, F. and Boulay, C. (1994), "Effect of loading rate on the strength of concrete subjected to uniaxial tension", Mater. Struct., 27(5), 260-264. https://doi.org/10.1007/BF02473042.
  30. Sharma, G., Sharma, S. and Sharma, S.K. (2022), "Moment-Curvature behavior of steel and GFRP reinforced beam using AE and DIC Techniques", Struct. Eng. Mech., 84(2), 253-268. https://doi.org/10.12989/sem.2022.84.2.253.
  31. Tai, Y. (2009), "Uniaxial compression tests at various loading rates for reactive powder concrete", Theor. Appl. Fract. Mech., 52(1), 14-21. https://doi.org/10.1016/j.tafmec.2009.06.001.
  32. Wang, J.Y. and Guo, J.Y. (2018), "Damage investigation of ultra high performance concrete under direct tensile test using acoustic emission techniques", Cement Concrete Compos., 88, 17-28. https://doi.org/10.1016/j.cemconcomp.2018.01.007.
  33. Wang, J.Y., Chen, Z.Z. and Wu, K. (2019), "Properties of calcium sulfoaluminate cement made ultra-high performance concrete: Tensile performance, acoustic emission monitoring of damage evolution and microstructure", Constr. Build. Mater., 208, 767-779. https://doi.org/10.1016/j.conbuildmat.2019.03.057.
  34. Wang, J.Y., Gu, J.B., Liu, C., Huang, Y.H., Xiao, R.C. and Ma, B. (2022), "Flexural behavior of ultra high performance concrete beams reinforced with high strength steel", Struct. Eng. Mech., 81(5), 539-550. https://doi.org/10.1016/j.compstruct.2022.115674.
  35. Wang, X., Liu, D., Zhang, Y. and Jiao, Y. (2021), "Fracture characterization of Ultra-High Performance Concrete notched beams under the influence of different material factors based on acoustic emission technique", Mater., 14(16), 4608. http://doi.org/10.3390/ma14164608.
  36. Wu, Z., Shi, C., He, W. and Wu, L. (2016), "Effects of steel fiber content and shape on mechanical properties of ultra high performance concrete", Constr. Build. Mater., 103, 8-14. https://doi.org/10.1016/j.conbuildmat.2015.11.028.
  37. Xu, M., Hallinan, B. and Wille, K. (2016), "Effect of loading rates on pull-out behavior of high strength steel fibers embedded in ultra-high performance concrete", Cement Concrete Compos., 70, 98-109. https://doi.org/10.1016/j.cemconcomp.2016.03.014.
  38. Xu, X., Jin, Z., Yu, Y. and Li, N. (2023), "Damage source and its evolution of ultra-high performance concrete monitoring by digital image correlation and acoustic emission technologies", J. Build. Eng., 65, 105734. https://doi.org/10.1016/j.jobe.2022.105734.
  39. Zhang, H., He, B., Zhu, X., Wang, Q. and Jiang, Z. (2023), "The use of AE technique for identifying ductility degradation against cryogenic on flexural performance of UHPC at various temperature conditions", Cement Concrete Compos., 137, 104904. https://doi.org/10.1016/j.cemconcomp.2022.104904.
  40. Zhuang, W., Li, S., Deng, Q., Chen, M. and Yu, Q. (2024), "Effects of coarse aggregates size on dynamic characteristics of ultra-high performance concrete: Towards enhanced impact resistance", Constr. Build. Mater., 411, 134524. https://doi.org/10.1016/j.conbuildmat.2023.134524.