DOI QR코드

DOI QR Code

Purification and Antibacterial Activity of Compound Derived from Marine Actinomycetes

해양 방선균 유래 물질의 정제 및 항균 활성

  • 정성윤 (대구가톨릭대학교 바이오메디컬학과)
  • Received : 2024.02.02
  • Accepted : 2024.03.12
  • Published : 2024.03.31

Abstract

Antibiotics are substances produced by microorganisms that kill or inhibit and are essential for infectious diseases management. This study aimed to provide basic data for overcoming antibiotic resistance in the marine bacterium LJ-18. The API 20NE and API 50CH kits were used to identify this microorganism. Morphological, physiological, and biochemical properties were investigated using MacFaddin's manuals. Subsequently, isolated LJ-18 was found to belong to a genus of Streptomyces that forms mycelia. LJ-18 also grew well at 28-32℃ on modified Bennett's agar. To isolate and purify the antibacterial compound, LJ-18 culture was divided into ethyl acetate and distilled water fractions. Considerable antimicrobial activity against various pathogenic microorganisms, including methicillin-resistant Staphylococcus aureus (MRSA), was confirmed in the C18 ODS open column fractions. Peak 2 compound was obtained using reversed-phase HPLC. As a result, this compound had a significant antimicrobial activity against various pathogenic microorganisms. In particular, it showed strong activity against MRSA, Mycobacterium smegmatis, Bacillus subtilis, Bacillus cereus, and Staphylococcus aureus.

Keywords

Acknowledgement

이 논문은 2021년도 대구가톨릭대학교 학술연구비 지원에 의한 것이며 이에 감사드립니다(20211191).

References

  1. Bang, J. H., Choi, H. J., Ahn, C. S., Kim, D. W., Jeong, Y. K., Joo, W. H., 2011, In vitro antimicrobial activity of a new isolate Streptomyces sp. BCNU 1030, J. Life Sci., 21(4), 589-595. https://doi.org/10.5352/JLS.2011.21.4.589
  2. Cecchini, M., Langer, J., Slawomirski, L., 2015, Antimicrobial resistance in G7 countries and beyond: economic issues, policies and options for action, Organization for Economic Co-operation and Development (OECD), Paris, France.
  3. Davis, S. L., Perri, M. B., Donabedian, S. M., Manierski, C., Robinson-Dunn, S., Hayden, M. K., Zervos, M. J., 2007, Epidemiology and outcomes of community-associated methicillin-resistant Staphylococcus aureus infection, J. Clin. Microbiol., 45, 1705-1711. https://doi.org/10.1128/JCM.02311-06
  4. Freel, K. C., Edlund, A., Jensen, P. R., 2012, Microdiversity and evidence for high dispersal rates in the marine Actinomycete "Salinispora Pacifica", Environ. Microbiol., 14, 480-493. https://doi.org/10.1111/j.1462-2920.2011.02641.x
  5. Ha, D. J., Kim, Y. J., 2003, Management of infection for methicillin resistant Staphylococcus aureus at an orthopaedic surgery department, J. Kor. Orthop., 38, 34-38. https://doi.org/10.4055/jkoa.2003.38.1.34
  6. Helmke, E., Weyland, H., 1984, Rhodococcus Marinonascens, Int. J. Syst. Bacteriol., 34, 127-138. https://doi.org/10.1099/00207713-34-2-127
  7. Hu, Y., Chen, J., Hu, G., Yu, J., Zhu, X., Lin, Y., Chen, S., Yuan, J., 2015, Statistical research on the bioactivity of new marine natural products discovered during the 28 years from 1985 to 2012, Mar. Drugs, 13, 202-221. https://doi.org/10.3390/md13010202
  8. Jakubiec-Krzesniak, K., Rajnisz-Mateusiak, A., Guspiel, A., Ziemska, J., Solecka, J., 2018, Secondary metabolites ofactinomycetes and their antibacterial, antifungal and antiviral properties, Pol. J. Microbiol., 67, 259-272. https://doi.org/10.21307/pjm-2018-048
  9. Jones, K. L., 1949, Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic, J. Bacteriol., 57(2), 141.
  10. Jose, P. A. Jebakumar, R. S. D., 2014, Unexplored hypersaline habitats are sources of novel actinomycetes, Front Microbiol., 5, 242.
  11. MacFaddin, J. F., 1980, Biochemical tests for identification of medical bacteria, 2nd ed., The Williams and Wilkins Co., Baltimore, USA.
  12. Manivasagan, P., Venkatesan, J., Sivakumar, K., Kim, S. K., 2014, Pharmaceutically active secondary metabolites of marine Actinobacteria, Microbiol. Res., 169, 262-278. https://doi.org/10.1016/j.micres.2013.07.014
  13. Moon, K., Xu, F., Seyedsayamdost, M. R., 2019, Ceblantin, a cryptic lanthipeptide antibiotic uncovered using bioactivity-coupled HiTES, Angew. Chem. Int. Ed. Engl., 58, 5973-5977. https://doi.org/10.1002/anie.201901342
  14. Munita, J. M., Arias, C. A., 2016, Mechanisms of antibiotic resistance, Microbiol. Spectrum, 4(2), 10.1128/microbiolspec, VMBF-0016-2015.
  15. National Committee for Clinical Laboratory Standards, 2009, Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard M07-A8, 8th ed., National Committee for Clinical Laboratory Standards, Wayne, PA, USA.
  16. Park, S. G., Yoo, J. C., Seong, C. N., Cho, S. S., 2013, Isolation and characterization of Bacillus subtilis MP56 with antimicrobial activity against MDR (multi drug resistant) strains, Kor. J. Microbiol., 49(1), 90-94. https://doi.org/10.7845/kjm.2013.017
  17. Proksch, P., Edrada, R. A., Ebel, R., 2003, Drugs from the sea- opportunities and obstacles, Mar. Drugs, 1, 5-17. https://doi.org/10.3390/md101005
  18. Seo, J., Moon, K., 2021, Structure and bioactivity of boholamide A from a tidal mudflat actinomycete, Kor. J. Pharmacogn., 52, 203-207.
  19. Shirling, E. B., Gottlieb, D., 1966, Methods for characterization of Streptomyces species, Int. J. Syst. Bacteriol., 16(3), 313-340. https://doi.org/10.1099/00207713-16-3-313