DOI QR코드

DOI QR Code

부산·경남지역 퇴적 점토의 함수비를 이용한 압밀정수 산정 연구

A Study on the Calculation of Consolidation Constants using Moisture Content of Sedimentary Clay in Busan and Gyeongnam Regions

  • Sung-Uk Kang (Korea Maritime and Ocean Univ.) ;
  • Dae-Hwan Kim (Korea Maritime and Ocean Univ.) ;
  • Tae-hyung Kim (Dept. of Civil Engrg., Korea Maritime and Ocean Univ.) ;
  • Chin-Gyo Chung (School of Chemical Engineering, Busan Institute of Science and Technology) ;
  • In-Gon Joo (School of Geoinformatics, Busan Institute of Science and Technology)
  • 투고 : 2024.01.15
  • 심사 : 2024.03.07
  • 발행 : 2024.03.30

초록

본 연구에서는 부산항 신항 및 부산항 북항의 해성점토, 김해와 양산을 포함한 낙동강 중·하류, 울산지역에 분포하고 있는 연약한 점토층에 대하여 물성 시험 및 표준압밀시험을 실시한 후 결과를 활용하여 물성 특성 중 시료의 교란 여부와 관계없고 개인별 시험오차 발생이 작은 물성인 함수비를 이용하여 압축지수, 처녀압축지수, 압밀계수, 팽창지수, 2차압축지수 등을 회귀분석하여 상관성과 정확도를 평가하여 함수비로 압밀정수를 평가 및 산정할 수 있는 방안을 검토하였다. 압축지수를 산정하기 위해 물성 시험 중 가장 많이 활용되는 함수비 및 간극비, 액성한계와 상관성을 분석한 결과 액성한계가 가장 낮은 상관성을 가지는 것으로 확인되었다. 현재 자연상태의 함수비를 활용하여 압밀정수를 선형회귀분석한 결과 높은 상관성을 보여 침하량 및 침하시간을 결정할 수 있는 관계식을 제시하였다. 본 연구결과 부산, 경남지역에 분포하고 있는 퇴적 점토층의 지반침하 검토 시 함수비를 이용하여 압밀정수를 평가 및 산정할 수 있는 대안으로 활용할 수 있다.

In this study, physical property tests and standard consolidation tests were conducted on the marine clay of Busan New Port and North Port, the middle and lower reaches of the Nakdong River including Gimhae and Yangsan, and Ulsan regions. The moisture content, a property unrelated to sample disturbance with small individual test errors, was used for regression analysis with the compression index, virgin compression index, consolidation coefficient, expansion index, and secondary compression index, among others. Subsequently, the correlation and accuracy were evaluated. Upon analyzing the correlation between the moisture content, void ratio, and liquid limit commonly used physical properties for calculating compression indexes, it was confirmed that the liquid limit had the lowest correlation. Through a linear regression analysis of the consolidation constants using the current moisture content in the natural state, a high correlation was demonstrated. Relationship equations were then presented to determine settlement and settlement time. This study suggests that moisture content can be utilized as an alternative for evaluating and calculating consolidation constants when examining ground settlement in sedimentary clays distributed in the Busan and Gyeongnam regions.

키워드

참고문헌

  1. Azzouz, A. S., Krizek, R. J. and Corotis, R. B. (1976), "Regression Analysis of Soil Compressibility, Soils and Foundation", Japan Society of Soil Mechanics and Foundations Engineering, Tokyo, Japan.
  2. Chung, S. G., Giao, P. H., Kim, G. J. and Leroueil, S. (2002), "Geotechnical properties of Pusan clay", Canadian Geotechnical Journal, Vol.39, No.5, pp.1050-1060. https://doi.org/10.1139/t02-055
  3. Herrero, O. R. (1983), "Universal Compression Index Equation, Closure", J. Geotech. Engrg, ASCE, Vol.109, No.5, pp.755-761. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:5(755)
  4. Jamiolkowski, M., Ladd, C. C., Germaine J. T. and Lancellotta, R. (1985), "New developmentsin field and laboratory testing of soils", Proceedings of 11th ICSMFE, San Francisco, Vol.1, pp.57-153
  5. Kim, T. H. (2021), "A research report of design and construction of soft ground improvement work and maintenance improvement plan", Korean Society of Civil Engineers, p.170
  6. KS F 2316 (2002), "Test method for one-dimensional consolidation properties of soils using incremental loading", Korean Standards Association, Seoul, South Korea. (in Korean)
  7. Lee, Y. G., Yang, K. J., Kim, S. B., Kim, J. C. and Kim, C. K. (2022), "Correction of Consolidation Parameters of Cohesive Soils due to Disturbance", Spring Geosynthetics Conference, Seoul, pp.111-112. (in Korean).
  8. Lim, J. C. (2019), "A final report on research on causes of settlement and prediction of long-term settlement in the Ungdong hinterland complex of Busan Port New Port", Korean Society of Civil Engineers, p.340. (in Korean)
  9. Lunne, T., Berre, T. and Strandvik, S. (1997), "Sample Disturbance Effects in Soft Low Plastic Norwegian Clay", Symp. on Recent Developmentsin Soil and Pavement Mechanics. Rio de Janeiro, pp.81-102.
  10. Mayne, P. W. (1980), "Cam-clay Predictions of Undrained Strength", J. Geotech. Engrg. Div., ASCE, Vol.106, No.11, pp.1219-1242. https://doi.org/10.1061/AJGEB6.0001060
  11. Mesri, G. (1973), "Coefficient of secondary compression", Journal of Soil Mechanics and Foundation Division, Vol.99, No.1, pp.123-137. https://doi.org/10.1061/JSFEAQ.0001840
  12. Moran, Proctor, Mueser, and Rutledge, P. C. (1958), "Study of deep soil stabilization by vertical sand drains, Bureau of Yards and Docks", Department of the Navy, Washington, D. C.
  13. Nishida, Y. (1956), "A Brief Note on Compression Index of Soil", J. Soil Mech. and Found Eng., ASCE, Vol.82, No.3, pp.1-14. https://doi.org/10.1061/JSFEAQ.0000015
  14. Park, C. S. and Kim, S. S. (2019), "A Study on the Estimation of Compression Index in the East-Southern Coast Clay of Korea", Journal of The Korean Ggeotechnical Society, Vol.35, No.8, pp.43-56. (in Korean)
  15. Skempton, A. W. (1944), "Note on Compressibility of Clays", Quarterly Journal of the Geotechnical Society of London, Vol.100, pp.119-135. https://doi.org/10.1144/GSL.JGS.1944.100.01-04.08
  16. Song, M. S. (1988), Correlation of soil properties of marine clay in Korea, Master's Thesis, Hanyang University.(in Korean).
  17. Terzaghi, K. and Peck R. (1967), Soil Mechanics in Engineering Practice, John Wiley and Sons, Inc, New York N.Y.