DOI QR코드

DOI QR Code

Measuring Acceptance Levels of Webcast-Based E-Learning to Improve Remote Learning Quality Using Technology Acceptance Model

  • Received : 2023.10.27
  • Accepted : 2024.02.02
  • Published : 2024.03.31

Abstract

This study aims to improve the quality of distance learning by developing webcast-based e-learning media and integrating it into an e-learning platform for functional job training purposes at the National Research and Innovation Agency, Indonesia. This study uses a Technology Acceptance Model (TAM) to assess and predict user perceptions of information systems using webcast platforms as an alternative to conventional applications. The research method was an online survey using Google Forms. Data collected from 136 respondents involved in practical job training were analyzed using structural equation modeling to test the technology acceptance model. The results showed that the proposed model effectively explained the variables associated with the adoption of web-based e-learning during the COVID-19 pandemic in Indonesia for participants engaged in functional job training. These findings suggest that users' perceptions of ease of use, usefulness, benefits, attitudes, intentions, and webcast usage significantly contribute to the acceptance and use of a more effective and efficient webcast-based e-learning platform.

Keywords

References

  1. R. A. Abumalloh, S. Asadi, M. Nilashi, B. M. Bidgoli, F. K. Nayer, S. Samad, S, Mohd, and O. Ibrahim, "The impact of coronavirus pandemic (COVID-19) on education: The role of virtual and remote laboratories in education," Technology in Society, vol. 67, pp. 101728, Nov. 2021. DOI: 10.1016/j.techsoc.2021.101728.
  2. D. Pal and V. Vanijja, "Perceived usability evaluation of Microsoft Teams as an online learning platform during COVID-19 using system usability scale and technology acceptance model in India," Children Youth Services Review, vol. 119, pp. 105535, Dec. 2020. DOI: 10.1016/j.childyouth.2020.105535.
  3. M. A. Almaiah, A. Al-Khasawneh, and A. Althunibat, "Exploring the critical challenges and factors influencing the E-learning system usage during COVID-19 pandemic," Education and Information Technologies, vol. 25, no. 6, pp. 5261-5280, May 2020. DOI: 10.1007/s10639-020-10219-y.
  4. N. T. T. Ho, S. Sivapalan, H. H. Pham, L. T. M. Nguyen, A. T. Van Pham, and H. V. Dinh, "Students' adoption of e-learning in emergency situation: the case of a Vietnamese university during COVID-19," Interactive Technology and Smart Education, vol. 18, no. 2, pp. 246-269, Dec. 2020. DOI: 10.1108/ITSE-08-2020-0164.
  5. G. Vladova, A. Ullrich, B. Bender, and N. Gronau, "Students' acceptance of technology-mediated teaching-how it was influenced during the COVID-19 pandemic in 2020: a study from Germany," Frontiers in Psychology, vol. 12, pp. 636086, Jan. 2021. DOI: 10.3389/fpsyg.2021.636086.
  6. M. J. Rosenberg and R. Foshay, "E-Learning: Strategies for Delivering Knowledge in the Digital Age," Performance Improvement, vol. 41, no. 5, pp. 50-51, Feb. 2007. DOI: 10.1002/pfi.4140410512.
  7. S. J. Daniel, "Education and the COVID 19 Pandemic," Prospects, vol. 49, pp. 91-96, Apr. 2020. DOI: 10.1007/s11125-020-09464-3.
  8. D. M. Barry, H. Kanemasu, N. Ogawa, and P. McGrath, "Technologies for teaching during a pandemic," Procedia Computer Science, vol. 192, pp. 1583-1590, Oct. 2021. DOI: 10.1016/j.procs.2021.08.162.
  9. M. Kerres, "Against all odds: education in Germany coping with Covid-19," Postdigital Science and Educaton, vol. 2, pp. 690-694, May 2020. DOI: 10.1007/s42438-020-00130-7.
  10. Mailizar, A. Almanthari, S. Maulina, and S. Bruce, "Secondary school mathematics teachers' views on e-learning implementation barriers during the COVID-19 pandemic: The case of Indonesia," Eurasia Journal of Mathematics, Science and Technology Education, vol. 16, no. 7, May 2020. DOI: 10.29333/EJMSTE/8240.
  11. C. J. Wang, C. Y. Ng, and R. H. Brook, "Response to COVID-19 in Taiwan: big data analytics, new technology, and proactive testing," JAMA, vol. 323, no. 14, pp. 1341-1342, Apr. 2020. DOI: 10.1001/jama.2020.3151.
  12. H. W. Barz and G. A. Bassett, "Multimedia network, protocol, design, and applications," Hobokan, NJ: Wiley, 2016.
  13. M. N. Giannakos and P. Vlamos, "Educational webcasts' acceptance: Empirical examination and the role of experience," British Journal of Educational Technology, vol. 44, no. 1, pp. 125-143, Mar. 2013. DOI: 10.1111/j.1467-8535.2011.01279.x.
  14. F. D. Davis, "Perceived usefulness, perceived ease of use, and user acceptance of information technology," MIS quarterly, vol. 13, no. 3, pp. 319-340, Sep. 1989. DOI: 10.2307/249008.
  15. M. Fishbein and I. Ajzen, "Belief, attitude, intention, and behavior: An introduction to theory and research," MA: Addison-Wesley, May 1975.
  16. S. S. Al-Gahtani, "Empirical investigation of e-learning acceptance and assimilation: A structural equation model," Applied Computing and Informatics, vol. 12, no. 1, pp. 27-50, Jan. 2016. DOI: 10.1016/j.aci.2014.09.001.
  17. Y. H. Lee, C. Hsiao, and S. H. Purnomo, "An empirical examination of individual and system characteristics on enhancing e-learning acceptance," Australasian Journal of Educational Technology, vol. 30, no. 5, pp. 562-592, Nov. 2014. DOI: 10.14742/ajet.381.
  18. A. Tarhini, K. Hone, and X. Liu, "Measuring the moderating effect of gender and age on E-learning acceptance in England: A structural equation modeling approach for an extended Technology Acceptance Model," Journal of Educational Computing Research, vol. 51, no. 2, pp. 163-184, Sep. 2014 DOI: 10.2190/EC.51.2.b.
  19. D. R. Bailey, N. Almusharraf, and A. Almusharraf, "Video conferencing in the e-learning context: explaining learning outcome with the technology acceptance model," Education and Information Technologies, vol. 27, no. 6, pp. 7679-7698, Feb. 2022. DOI: 10.1007/s10639-022-10949-1.
  20. F. D. Davis, "A technology acceptance model for empirically testing new end-user information systems," Massachusetts Institute of Technology, 1986.
  21. J. F. Hair, W. C. Black, B. J. Babin, and R. E. Anderson, "Multivariate data analysis: Global edition." 7th ed. London, UK: Pearson Education, 2010.
  22. S. L. Lew, S. H. Lau, and M. C. Leow, "Usability Factors Predicting Continuance Of Intention To Use Cloud E-Learning Application," Heliyon, vol. 5, no. 6, Jun. 2019. DOI: 10.1016/j.heliyon.2019.e01788.
  23. J. Fraenkel, N. Wallen, and H. Hyun, "How to design and evaluate research in education," 8th ed. New York, NY: McGraw Hill, 2011.
  24. M. Bong and E. M. Skaalvik, "Academic Self-Concept And Self- Efcacy: How Different Are They Really?," Educational Psychology Review, vol. 5, no. 1, pp. 1-40, Mar. 2003. DOI: 10.1023/A:1021302408382.
  25. A. N. Kusumadewi, N. A. Lubis, R. Prastiyo, and D. Tamara, "Technology Acceptance Model (TAM) In The Use of Online Learning Applications During The Covid-19 Pandemic For Parents of Elementary School Students," Edunesia : Jurnal Ilmiah Pendidikan, vol. 2, no. 1, pp. 272-292, Jan. 2021. DOI: 10.51276/edu.v2i1.120.
  26. R. Oktofiyani N, Nurmalasari and W. Anggraeni, "Penerimaan sistem e-learning menggunakan technology acceptance model (TAM) Study Kasus Siswa/I Kelas X Di SMU Negeri 92 Jakarta," Pilar Nusa Mandiri, vol. 12, no. 1, pp. 46-53, Mar. 2016.
  27. M. Carlsson and E. Hamrin, "Evaluation of the life satisfaction questionnaire (LSQ) using structural equation modeling (SEM)," Quality Life Research, vol. 11, no. 5, pp. 415-425, Aug. 2002. DOI: 10.1023/a:1015670628990.
  28. I. Ghozali, "Model persamaan struktural konsep dan aplikasi dengan program AMOS 24," Semarang, ID: Badan Penerbit Universitas Diponegoro, July. 2014.
  29. H. A. Alfadda and H. S. Mahdi, "Measuring students' use of zoom application in language course based on the technology acceptance model (TAM)," Journal of Psycholinguist Research, vol. 50, no. 4, pp. 883-900, Aug. 2021. DOI: 10.1007/s10936-020-09752-1.
  30. C. Coman, L. G. Tiru, L. Mesesan-Schmitz, C. Stanciu, and M. C. Bularca, "Online teaching and learning in higher education during the coronavirus pandemic: Students' perspective," Sustainability, vol. 12, no. 24, pp. 10367, Dec. 2020. DOI: 10.3390/su122410367.
  31. C. Buabeng-Andoh, W. Yaokumah, and A. Tarhini, "Investigating students' intentions to use ICT: A comparison of theoretical models," Education and Information Technologies, vol. 24, no. 1, pp. 643-660, Aug. 2018. DOI: 10.1007/s10639-018-9796-1.
  32. T. Teo, G. Sang, B. Mei, and C. K. W. Hoi, "Investigating preservice teachers' acceptance of Web 2.0 technologies in their future teaching: a Chinese perspective," Interactive Learning Environments, vol. 27, no. 4, pp. 530-546, Jun. 2018. DOI: 10.1080/10494820.2018.1489290.
  33. S. Sukendro, A. Habibi, K. Khaeruddin, B. Indrayana, S. Syahruddin, F. A. Makadada, and H. Hakim, "Using an extended technology acceptance model to understand students' use of e-learning during Covid-19: Indonesian sport science education context," Heliyon, vol. 6, no. 11, pp. e05410, Nov. 2020. DOI: 10.1016/j.heliyon.2020.e05410.
  34. S. Alharbi and S. Drew, "Using the technology acceptance model in understanding academics' behavioural intention to use learning management systems," International Journal of Advanced Computer Science and Applications, vol. 5, no. 1, Jan. 2014.
  35. R. Cheung and D. Vogel, "Predicting user acceptance of collaborative technologies: An extension of the technology acceptance model for e-learning," Computers & Education, vol. 63, pp. 160-175, Apr. 2013. DOI: 10.1016/j.compedu.2012.12.003.
  36. C. Ching-Ter, J. Hajiyev, and C. R. Su, "Examining the students' behavioral intention to use e-learning in Azerbaijan? The general extended technology acceptance model for e-learning approach," Computers & Education, vol. 111, pp. 128-143, Aug. 2017. DOI: 10.1016/j.compedu.2017.04.010.
  37. D. Pal and S. Patra, "University students' perception of video-based learning in times of COVID-19: A TAM/TTF perspective," International Journal of Human-Computer Interaction, vol. 37, no. 10, pp. 903-921, Dec. 2020. DOI: 10.1080/10447318.2020.1848164.
  38. N. S. Mohd Satar, A. H. Morshidi, and D. O. Dastane, "Success factors for e-Learning satisfaction during COVID-19 pandemic lockdown," International Journal of Advanced Trends in Computer Science and Engineering, vol. 9, no. 5, pp. 7859-7865, Oct. 2020.
  39. V. Z. Vanduhe, M. Nat, and H. F. Hasan, "Continuance Intentions to Use Gamification for Training in Higher Education: Integrating the Technology Acceptance Model (TAM), Social Motivation, and Task Technology Fit (TTF)," IEEE Access, vol. 8, pp. 21473-21484, Jan. 2020. DOI: 10.1109/ACCESS.2020.2966179.
  40. A. S. Oktarini and Wardana, "Pengaruh perceived ease of use, dan perceived Enjoyment terhadap Customer Satisfaction dan Repurchase intention," Journal Inovasi Bisnis Dan Manajemen Indonesia, vol. 1, no. 2, pp.227-237, Mar. 2018. DOI: 10.31842/jurnal-inobis.v1i2.32.
  41. S. H. Raza, H. Abu Bakar, and B. Mohamad, "The effects of advertising appeals on consumers' behavioural intention towards global brands: The mediating role of attitude and the moderating role of uncertainty avoidance," Journal of Islamic Marketing, vol. 11, no. 2, pp. 440-460, Mar. 2020. DOI: 10.1108/JIMA-11-2017-0134.
  42. A. Panagiotarou, Y. C. Stamatiou, C. Pierrakeas, and A. Kameas, "Gamification acceptance for learners with different E-skills," International Journal of Learning, Teaching and Educational Research, vol. 19, no. 2, pp. 263-278, Feb. 2020. DOI: 10.26803/IJLTER.19.2.16.
  43. A. Raman, R. Thannimalai, M. Rathakrishnan, and S. N. Ismail, "Investigating the influence of intrinsic motivation on behavioral intention and actual use of technology in moodle platforms," International Journal of Instruction, vol. 15, no. 1, pp. 1003-1024, Jan. 2022. DOI: 10.29333/iji.2022.15157a.