DOI QR코드

DOI QR Code

A Derivation of Aerosol Optical Depth Estimates from Direct Normal Irradiance Measurements

  • Yun Gon Lee (Department of Astronomy and Space Sciences, Chungnam National University) ;
  • Chang Ki Kim (Department of Energy Engineering, University of Science and Technology)
  • Received : 2024.02.14
  • Accepted : 2024.03.12
  • Published : 2024.03.25

Abstract

This study introduces a method for estimating Aerosol Optical Depth (AOD) using Broadband Aerosol Optical Depth (BAOD) derived from direct normal irradiance and meteorological factors observed between 2016 and 2017. Through correlation analyses between BAOD and atmospheric components such as Rayleigh scattering, water vapor, and tropospheric nitrogen dioxide, significant relationships were identified, enabling accurate AOD estimation. The methodology demonstrated high correlation coefficients and low Root Mean Square Errors (RMSE) compared to actual AOD500 measurements, indicating that the attenuation effects of water vapor and the direct impact of tropospheric nitrogen dioxide concentration are crucial for precise aerosol optical depth estimation. The application of BAOD for estimating AOD500 across various time scales-hourly, daily, and monthly-showed the approach's robustness in understanding aerosol distributions and their optical properties, with a high coefficient of determination (0.96) for monthly average AOD500 estimates. This study simplifies the aerosol monitoring process and enhances the accuracy and reliability of AOD estimations, offering valuable insights into aerosol research and its implications for climate modeling and air quality assessment. The findings underscore the viability of using BAOD as a surrogate for direct AOD500 measurements, presenting a promising avenue for more accessible and accurate aerosol monitoring practices, crucial for improving our understanding of aerosol dynamics and their environmental impacts.

Keywords

Acknowledgement

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE) (2019371010006B, Development of core stabilizing technology for renewable power management system).

References

  1. Seinfeld, J.H., and Pandis, S.N., 2016, "Atmospheric chemistry and physics: From air pollution to climate change", 3rd Edition, John Wiley & Sons, New Jersey.
  2. Holben, B.N., Eck, T.F., Slutsker, I., Tanre, D., Buis, J.P., Setzer, A., Vermote, E., Reagan, J.A., Kaufman, Y.J., and Nakajima, T., et al., 1998, "AERONET-A federated instrument network and data archive for aerosol characterization", Remote Sensing of Environment, 66(1),1-16. https://doi.org/10.1016/S0034-4257(98)00031-5
  3. Ruiz-Arias, J.A., Dudhia, J., Gueymard, C.A. and PozoVazquez, D., 2013, "Assessment of the level-3 MODIS daily aerosol optical depth in the context of surface solar radiation and numerical weather modeling", Atmos. Chem. Phys., 13(2), 675-692. https://doi.org/10.5194/acp-13-675-2013
  4. Antuna-Marrero, J.C., Cachorro Revilla, V., Garcia Parrado, F., de Frutos Baraja, A., Rodriguez Vega, A., Mateos, D., Estevan Arredondo, R. and Toledano, C., 2018, "Comparison of aerosol optical depth from satellite (MODIS), sun photometer and broadband pyrheliometer ground-based observations in Cuba", Atmos. Meas. Tech., 11 (4), 2279-2293. https://doi.org/10.5194/amt-11-2279-2018
  5. Stothers, R.B., 1996, "The great dry fog of 1783", Climatic Change, 32(1), 79-89. https://doi.org/10.1007/BF00141279
  6. Linke, F., 1922, "Transmission coefficient and turbidity factor", J Beitraege Phys Fr Atom, 10 (2), 91-103.
  7. Unsworth, M.H. and Monteith, J.L., 1972, "Aerosol and solar radiation in Britain", Quarterly Journal of the Royal Meteorological Society, 98(418), 778-797. https://doi.org/10.1002/qj.49709841806
  8. Gueymard, C.A., 1998, "Turbidity determination from broadband irradiance measurements: A detailed multicoefficient approach", J. Appl. Meteorol., 37(4), 414-435. https://doi.org/10.1175/1520-0450(1998)037<0414:TDFBIM>2.0.CO;2
  9. Qiu, J., 1998, "A method to determine atmospheric aerosol optical depth using total direct solar radiation", J Atmos Sci, 55(5), 744-757. https://doi.org/10.1175/1520-0469(1998)055<0744:AMTDAA>2.0.CO;2
  10. Qiu, J., 2001, "Broadband extinction method to determine atmospheric aerosol optical properties", Tellus B: Chemical and Physical Meteorology, 53(1), 72-82. https://doi.org/10.3402/tellusb.v53i1.16540
  11. Qiu, J., 2003, "Broadband extinction method to determine aerosol optical depth from accumulated direct solar radiation", J. Appl. Meteorol., 42(11), 1611-1625. https://doi.org/10.1175/1520-0450(2003)042<1611:BEMTDA>2.0.CO;2
  12. Gueymard, C.A., 2012, "Temporal variability in direct and global irradiance at various time scales as affected by aerosols", Solar Energy, 86(12), 3544-3553. https://doi.org/10.1016/j.solener.2012.01.013
  13. Gueymard, C. and Vignola, F., 1998, "Determination of atmospheric turbidity from the diffuse-beam broadband irradiance ratio", Solar Energy, 63(3), 135-146. https://doi.org/10.1016/S0038-092X(98)00065-6
  14. Gueymard, C. and Kambezidis, H.D., 1997, "Illuminance turbidity parameters and atmospheric extinction in the visible spectrum", Quarterly Journal of the Royal Meteorological Society, 123(539), 679-697. https://doi.org/10.1002/qj.49712353908
  15. Kim, C.K., Kim, H.G., Kang, Y.H., and Yun, C.Y., 2019, "Analysis of clear sky index defined by various ways using solar resource map based on Chollian satellite imagery", J Korean Solar Energy, 39(3), 47-57. https://doi.org/10.7836/kses.2019.39.3.047
  16. Lee, S., Choi, M., Kim, J., Kim, M., and Lim H., 2017, "Retrieval of aerosol optical depth with high spatial resolution using GOCI data", Korean Journal of Remote Sensing, 33(6), 961-970.
  17. Lim, H., Choi, M., Kim, M., Kim, J., Go, S., and Lee, S., 2018, "Intercomparing the aerosol optical depth using the geostationary satellite sensors (AHI, GOCI and MI) from Yonsei AErosol Retrieval (YAER) algorithm", Journal of the Korean Earth Science Society, 39(2), 119-130.  https://doi.org/10.5467/JKESS.2018.39.2.119