참고문헌
- A. Masood and K. Ahmad, "A Review on Emerging Artificial Intelligence (AI) Techniques for Air Pollution Forecasting: Fundamentals, Application and Performance," Journal of Cleaner Production, Vol. 322, 2021. DOI: https://doi.org/10.1016/j.jclepro.2021.129072
- L. Bai, J. Wang, X. Ma, and H. Lu, "Air Pollution Forecasts: An Overview," International Journal of Environmental Research and Public Health, , Vol. 15, No. 4, 2018. DOI: https://doi.org/10.3390/ijerph15040780
- S. M .Cabaneros, J. K. Calautit, and B. R. Hughes, "A Review of Artificial Neural Network Models for Ambient Air Pollution Prediction," Environmental Modelling & Software, Vol. 119, pp. 285-304, 2019. DOI: https://doi.org/10.1016/j.envsoft.2019.06.014
- P. Asha, L. Natrayan, B. T. Geetha, J. R. Beulah, R. Sumathy, G. Varalakshmi, and S. Neelakandan, "IoT Enabled Environmental Toxicology for Air Pollution Monitoring using AI Techniques," Environmental Research, Vol. 205, 2022. DOI: https://doi.org/10.1016/j.envres.2021.112574
- A. Almalawi, F. Alsolami, A. I. Khan, A. Alkhathlan, A. Fahad, K. Irshad, S. Qaiyum, and A. S. Alfakeeh, "An IoT Based System for Magnify Air Pollution Monitoring and Prognosis using Hybrid Artificial Intelligence Technique," Environmental Research, Vol. 206, 2022. DOI: https://doi.org/10.1016/j.envres.2021.112576
- Z. Ye, J. Yang, N. Zhong, X. Tu, J. Jia, and J. Wang, "Tackling Environmental Challenges in Pollution Controls using Artificial Intelligence: A Review, Science of the Total Environment, Vol. 699, 2020. DOI: https://doi.org/10.1016/j.scitotenv.2019.134279
- J. He, S. Gong, Y. Yu, L. Yu, L. Wu, H. Mao, C. Song, S. Zhao, H. Liu, X. Li, and R. Li, "Air Pollution Characteristics and their Relation to Meteorological Conditions during 2014-2015 in Major Chinese Cities," Environmental Pollution, Vol. 223, pp. 484-496, 2017. DOI: https://doi.org/10.1016/j.envpol.2017.01.050
- X. Feng, Q. Li, , Y. Zhu, J. Hou, L. Jin, and J. Wang, "Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation," Atmospheric Environment, Vol. 107, pp. 118-128, 2015. DOI: https://doi.org/10.1016/j.atmosenv.2015.02.030
- C. Huang and P. Kuo, "A Deep CNN-LSTM Model for Particulate Matter (PM2.5) Forecasting in Smart Cities," Sensors, Vol. 18, No. 7, 2018. DOI: https://doi.org/10.3390/s18072220
- X. Li, L. Peng, X. Yao, S. Cui, Y. Hu, C. You, and T. Chi, "Long Short-Term Memory Neural Network for Air Pollutant Concentration Predictions: Method Development and Evaluation," Environmental Pollution, Vol. 231, pp. 997-1004, 2017. DOI: https://doi.org/10.1016/j.envpol.2017.08.114
- T. Li, H. Shen, Q. Yuan, X. Zhang, and L. Zhang, " Estimating ground-level PM2. 5 by fusing satellite and station observations: a geo-intelligent deep learning approach," Geophysical Research Letters, Vol. 44. No. 23, pp. 11-985, 2017. DOI: https://doi.org/10.1002/2017gl075710
- N. Zimmerman, A. A. Presto, S. P. N. Kumar, J .Gu, A. Hauryliuk, E. s. Robinson, A. L. Robinson, and R. Subramanian, "A machine learning calibration model using random forests to improve sensor performance for lower-cost air quality monitoring." Atmospheric Measurement Techniques, Vol. 11, No. 1, pp.291-313, 2018. DOI: https://doi.org/10.5194/amt-11-291-2018
- Y. Qi, Q. Li, H. Karimian, D. Liu, "A Hybrid Model for Spatiotemporal Forecasting of PM2.5 Based on Graph Convolutional Neural Network and Long Short-Term Memory," Science of the Total Environment, Vol. 664, pp. 1-10, 2019. DOI: https://doi.org/10.1016/j.scitotenv.2019.01.333
- M. Stafoggia, T. Bellander, S. Bucci, M. Davoli, K. De Hoogh, F. De'Donato, ... and J. Schwartz, "Estimation of daily PM10 and PM2. 5 concentrations in Italy, 2013-2015, using a spatiotemporal land-use random-forest model," Environment international, Vol. 124, pp. 170-179, 2019. DOI: https://doi.org/10.1016/j.envint.2019.01.016
- J. Zhao, F. Deng, Y. Cai, and J. Chen, "Long Short-Term Memory - Fully Connected (LSTM-FC) Neural Network for PM2.5 Concentration Prediction," Chemosphere, Vol. 220, pp. 486-492, 2019. DOI: https://doi.org/10.1016/j.chemosphere.2018.12.128
- M. Z. Joharestani, , Cao, C., X. Ni, B. Bashir, and S. Talebiesfandarani, "PM2. 5 prediction based on random forest, XGBoost, and deep learning using multisource remote sensing data," Atmosphere, Vo. 10. No. 7, 2019. DOI: https://doi.org/10.3390/atmos10070373