DOI QR코드

DOI QR Code

An experimental investigation on dispersion and geotechnical properties of dispersive clay soil stabilized with Metakaolin and Zeolite

  • Ahmadreza Soltanian (Department of Civil Engineering, Faculty of Civil and Earth Resources Engineering, Islamic Azad University) ;
  • Amirali Zad (Department of Civil Engineering, Faculty of Civil and Earth Resources Engineering, Islamic Azad University) ;
  • Maryam Yazdib (Department of Civil Engineering, Faculty of Civil and Earth Resources Engineering, Islamic Azad University) ;
  • Amin Tohidic (Department of Civil Engineering, Faculty of Civil and Earth Resources Engineering, Islamic Azad University)
  • Received : 2023.08.17
  • Accepted : 2024.02.28
  • Published : 2024.03.25

Abstract

Dispersion occurs when clay soil disperses under specific conditions and is rapidly washed away. While there are numerous methods for rectifying it, they are neither cost nor time-effective. The current study used metakaolin and zeolite to improve heavily dispersive clay soil either separately or in combination at 0%, 2%, 4%, 6%, and 8% of the soil weight. After 7 days of curing, the samples were tested to determine the extent of change in the dispersion potential, as well as the improvement of the geotechnical properties of the soil. The results indicated that the addition of 2% zeolite with 6% to 8% metakaolin decreased the dispersion potential considerably. Double hydrometry test findings revealed that the dispersion potential decreased by almost 70% and entered the non-dispersive group; the crumb test also revealed this. Atterberg limits testing indicated a decrease in the plasticity index which reduced the flexibility of the samples. The greatest decrease in PI (67.5%) was achieved with the addition of 8% zeolite plus 8% metakaolin to the soil. The results of density tests revealed that a decrease in the optimal moisture content increased the maximum dry density of soil. This increase in density was a response to the high reactivity of metakaolin with calcium hydroxide and the formation of calcium hydroxide hydrate gel. This eventually caused an increase in the unconfined compressive strength, the greatest increase in strength of about 1.8-fold was observed with a combination of 2% zeolite and 6% metakaolin compared to the unmodified sample.

Keywords

References

  1. Abbaslou, H., Hadifard, H. and Poorgohardi, A. (2016), "Characterization of dispersive problematic soils and engineering improvements: A review", Comput. Mater. Civil Eng., 1(2), 65-83.
  2. Al-Khalili, A.M., Ali, A.S. and Al-Taie, A.J. (2021), "Effect of metakaolin and silica fume on the engineering properties of expansive soil". J. Phys.: Conference Series, 1895(1), 12-17, https://doi.org/10.1088/1742-6596/1895/1/012017.
  3. Alrubaye, A.J., Hasan, M. and Fattah, M.Y. (2018), "Effects of using silica fume and lime in the treatment of kaolin soft clay", Geomech. Eng., 14(3), 247-255. https://doi.org/10.12989/gae.2018.14.3.247.
  4. ASTM_D2166 (2016), Standard Test Method for Unconfined Compressive Strength of Cohesive Soil, ASTM International, West Conshohocken, PA, USA.
  5. ASTM_D2487 (2017), Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System), ASTM International, West Conshohocken, PA, USA.
  6. ASTM_D4221-18 (2018), Standard Test Method for Dispersive Characteristics of Clay Soil by Double Hydrometer, ASTM International, West Conshohocken, PA, USA.
  7. ASTM_D4318 (2017), Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, ASTM International, West Conshohocken, PA, USA.
  8. ASTM_D4972-19 (2019), Standard Test Methods for pH of Soils, ASTM International, West Conshohocken, PA, USA.
  9. ASTM_D6572-21 (2021), Standard Test Method for Determining Dispersive Characteristics of Clayey Soils by Crumb Test, ASTM International, West Conshohocken, PA, USA.
  10. ASTM_D698 (2014), Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort, ASTM International, West Conshohocken, PA, USA.
  11. Attah, I.C., Agunwamba, J.C., Etim, R.K. and Ogarekpe, N.M. (2019), "Modelling and predicting of CBR values of lateritic soil treated with metakaolin for road material", ARPN J. Eng. Appl. Sci., 14(20), 3609-3618.
  12. Batis, G., Pantazopoulou, P., Tsivilis, S and, Badogiannis, E. (2005), "The effect of metakaolin on the corrosion behavior of cement mortars", Cement Concrete Compos., 27(1), 125-130. https://doi.org/10.1016/j.cemconcomp.2004.02.041.
  13. Bell, F.G. and Maud, R.R. (1994), "Dispersive soils: a review from a South African perspective", Q. J. Eng. Geol. Hydroge., 27(3), 195-210. https://doi.org/10.1144/GSL.QJEGH.1994.027.P3.02.
  14. Caballero.L.R, Paiva, M.D.D.M., Fairbairn, E.D.M.R. and Toledo, R.D. (2019), "Thermal, mechanical and microstructural analysis of metakaolin based geopolymers", Mater. Res., 22. https://doi.org/10.1590/1980-5373-MR-2018-0716.
  15. Calik, U. and Sadoglu, E. (2014), "Engineering properties of expansive clayey soil stabilized with lime and perlite", Geomech. Eng., 6(4), 403-418. https://doi.org/10.12989/gae.2014.6.4.403.
  16. Canakci, H., Aziz, A. and Celik, F. (2015), "Soil stabilization of clay with lignin, rice husk powder and ash", Geomech. Eng., 8(1), 67-79. https://doi.org/10.12989/gae.2015.8.1.067.
  17. Demirbas, G. (2009), "Stabilization of expansive soils using Bigadic zeolite (boron by-product)", Master Dissertation, Middle East Technical University, Ankara, Turkey.
  18. Fan, H. and Kong, L. (2013), "Empirical equation for evaluating the dispersivity of cohesive soil", Can. Geotech. J., 50(9), 989-994. https://doi.org/10.1139/cgj-2012-0332.
  19. Flores-Berrones., R. and Lopez-Acosta, N.P. (2011), "Internal Erosion due to Water Flow through Earth Dams and Earth Structures", INTECH Open Access Publisher.
  20. Ghrici, M., Kenai, S. and Said-Mansour, M. (2007), "Mechanical properties and durability of mortar and concrete containing natural pozzolana and limestone blended cement", Cement Concrete Compos., 29(7), 542-549. https://doi.org/10.1016/j.cemconcomp.2007.04.009.
  21. Glavind, M. (2009), "Sustainability of cement, concrete and cement replacement materials in construction", Sustain. Constr. Mater., 120-147. https://doi.org/10.1533/9781845695842.120.
  22. Iswarya, G. and Beulah, M. (2021), "Use of zeolite and industrial waste materials in high strength concrete-A review", Materials Today: Proceedings, 46, 116-123. https://doi.org/10.1016/j.matpr.2020.06.329.
  23. Khajeh, A., Jamshidi Chenari, R., MolaAbasi, H. and Payan, M. (2022), "An experimental investigation on geotechnical properties of a clayey soil stabilised with lime and zeolite in base and subbase courses", Road Mater. Pavement Design, 23(12), 2924-2941. https://doi.org/10.1080/14680629.2021.1997789.
  24. Kolovos, K.G., Asteris, P.G., Cotsovos, D.M., Badogiannis, E. and Tsivilis, S. (2013), "Mechanical properties of soil Crete mixtures modified with metakaolin", Constr. Build. Mater., 47, 1026-1036. https://doi.org /10.1016/j.conbuildmat.2013.06.008.
  25. Makwin, H.L. (2021), "Investigation of effect of zeolite on strength and microstructure development of cement stabilized clay", Doctoral dissertation, Federal University of Technology, Minna, Nigeria.
  26. Moghadasnejad, F. and Modarres, A. (2010), "Soil Stabilization with Waterproof Cement for Road Applications ", Amirkabir J. Civil Eng., 42(1), 55-63. https://doi.org/10.22060/CEEJ.2010.155.
  27. MolaAbasi, H., Kharazmi, P., Khajeh, A., Saberian, M., Chenari, R.J., Harandi, M. and Li, J. (2022), "Low plasticity clay stabilized with cement and zeolite: An experimental and environmental impact study", Resour. Conserv. Recycling, 184. https://doi.org/10.1016/j.resconrec.2022.106408.
  28. MolaAbasi, H. and Shooshpasha, I. (2016), "Prediction of zeolitecement- sand unconfined compressive strength using polynomial neural Network", Eur. Phys. J. Plus, 131, 1-12. https://doi.org/10.1140/epjp/i2016-16108-5.
  29. Osinubi, K.J., Yohanna, P. and Eberemu, A.O. (2015), "Cement modification of tropical black clay using iron ore tailing as admixture", J. Transport. Geotech., 5, 35-49. https://doi.org/10.1016/j.trgeo.2015.10.001.
  30. Roohbakhshan, A. and Kalantari, B. (2016), "Stabilization of clayey soil with lime and waste stone powder", Amirkabir J. Civil Eng., 48(4), 429-438. https://doi.org/10.22060/CEEJ.2016.679.
  31. Salahudeen, A.B. and Ochepo, J. (2015), "Effect of bagasse ash on some engineering properties of lateritic soil", Jordan J. Civil Eng., 9(4), 1-9.
  32. Salehi, D. and Heidari, A. (2022), "Embankment dam design with dispersive soil: Solutions and challenges", Geotech. Geol. Eng., 40(8), 4289-4299. https://doi.org/10.21203/rs.3.rs-1033299/v1.
  33. ShahriarKian, M., Kabiri, S. and Bayat, M. (2021), "Utilization of zeolite to improve the behavior of cement-stabilized soil", Int. J. Geosynthetics and Ground Eng., 7(2), 35. https://doi.org/10.1007/s40891-021-00284-9.
  34. Shang, H. (2015), "Geotechnical laboratory characterization of sand zeolite mixtures", Master Dissertation, University of Louisville, Kentucky, USA.
  35. Singh, B., Gahlot, P.K. and Purohit, D.G.M. (2018), "Dispersive Soils Characterization, Problems and Remedies", Int, Res. J. Eng. Tech., 5(6), 2478-2484.
  36. Sudagar, A., Andrejkovicova, S., Patinha, C., Velosa, A., McAdam, A., da Silva, E.F. and Rocha, F. (2018), "A novel study on the influence of cork waste residue on metakaolinzeolite based geopolymers", Appl. Clay Sci., 152, 196-210. https://doi.org/10.1016/j.clay.2017.11.013.
  37. Sun, Y.J., Ma, J., Chen, Y.G., Tan, B.H. and Cheng, W.J. (2020), "Mechanical behavior of copper-contaminated soil solidified and stabilized with carbide slag and metakaolin", Environ. Earth Sci., 79(18), 423. https://doi.org/10.1007/s12665-020-09172-3.
  38. Taherkhani, H. (2016), "Investigation and comparison of compressive strength of clay soils stablized by cement, lime and CBR plus", Modares Civil Eng. J., 16(4), 161-174.
  39. Van de Graaff, R. and Patterson, R.A. (2001), "Explaining the mysteries of salinity sodicity, SAR and ESP in on-site practice", Conference: Advancing Onsite Wastewater Systems, University of Armidale, NewEngland, September.
  40. Vogiatzis, D., Kantiranis, N., Filippidis, A., Tzamos, E. and Sikalidis, C. (2012), "Hellenic natural zeolite as a replacement of sand in mortar: mineralogy monitoring and evaluation of its influence on mechanical properties", Geosciences, 2(4), 298-307. https://doi.org/10.3390/geosciences2040298.
  41. Wianglor, K., Sinthupinyo, S., Piyaworapaiboon, M. and Chaipanich, A. (2017), "Effect of alkali-activated metakaolin cement on compressive strength of mortars", Appl. Clay Sci., 141, 272-279. https://doi.org/10.1016/j.clay.2017.01.025.
  42. Wu, Z., Deng, Y., Liu, S., Liu, Q., Chen, Y. and Zha, F. (2016), "Strength and micro-structure evolution of compacted soils modified by admixtures of cement and metakaolin", Appl.Clay Sci., 127, 44-51. https://doi.org/10.1016/j.clay.2016.03.040.
  43. Zhang, T., Yue, X., Deng, Y., Zhang, D. and Liu, S. (2014), "Mechanical behaviour and micro-structure of cement-stabilised marine clay with a metakaolin agent", Constr. Build. Mater., 73, 51-57. https://doi.org/10.1016/j.conbuildmat.2014.09.041.