References
- Abbaslou, H., Hadifard, H. and Poorgohardi, A. (2016), "Characterization of dispersive problematic soils and engineering improvements: A review", Comput. Mater. Civil Eng., 1(2), 65-83.
- Al-Khalili, A.M., Ali, A.S. and Al-Taie, A.J. (2021), "Effect of metakaolin and silica fume on the engineering properties of expansive soil". J. Phys.: Conference Series, 1895(1), 12-17, https://doi.org/10.1088/1742-6596/1895/1/012017.
- Alrubaye, A.J., Hasan, M. and Fattah, M.Y. (2018), "Effects of using silica fume and lime in the treatment of kaolin soft clay", Geomech. Eng., 14(3), 247-255. https://doi.org/10.12989/gae.2018.14.3.247.
- ASTM_D2166 (2016), Standard Test Method for Unconfined Compressive Strength of Cohesive Soil, ASTM International, West Conshohocken, PA, USA.
- ASTM_D2487 (2017), Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System), ASTM International, West Conshohocken, PA, USA.
- ASTM_D4221-18 (2018), Standard Test Method for Dispersive Characteristics of Clay Soil by Double Hydrometer, ASTM International, West Conshohocken, PA, USA.
- ASTM_D4318 (2017), Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, ASTM International, West Conshohocken, PA, USA.
- ASTM_D4972-19 (2019), Standard Test Methods for pH of Soils, ASTM International, West Conshohocken, PA, USA.
- ASTM_D6572-21 (2021), Standard Test Method for Determining Dispersive Characteristics of Clayey Soils by Crumb Test, ASTM International, West Conshohocken, PA, USA.
- ASTM_D698 (2014), Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort, ASTM International, West Conshohocken, PA, USA.
- Attah, I.C., Agunwamba, J.C., Etim, R.K. and Ogarekpe, N.M. (2019), "Modelling and predicting of CBR values of lateritic soil treated with metakaolin for road material", ARPN J. Eng. Appl. Sci., 14(20), 3609-3618.
- Batis, G., Pantazopoulou, P., Tsivilis, S and, Badogiannis, E. (2005), "The effect of metakaolin on the corrosion behavior of cement mortars", Cement Concrete Compos., 27(1), 125-130. https://doi.org/10.1016/j.cemconcomp.2004.02.041.
- Bell, F.G. and Maud, R.R. (1994), "Dispersive soils: a review from a South African perspective", Q. J. Eng. Geol. Hydroge., 27(3), 195-210. https://doi.org/10.1144/GSL.QJEGH.1994.027.P3.02.
- Caballero.L.R, Paiva, M.D.D.M., Fairbairn, E.D.M.R. and Toledo, R.D. (2019), "Thermal, mechanical and microstructural analysis of metakaolin based geopolymers", Mater. Res., 22. https://doi.org/10.1590/1980-5373-MR-2018-0716.
- Calik, U. and Sadoglu, E. (2014), "Engineering properties of expansive clayey soil stabilized with lime and perlite", Geomech. Eng., 6(4), 403-418. https://doi.org/10.12989/gae.2014.6.4.403.
- Canakci, H., Aziz, A. and Celik, F. (2015), "Soil stabilization of clay with lignin, rice husk powder and ash", Geomech. Eng., 8(1), 67-79. https://doi.org/10.12989/gae.2015.8.1.067.
- Demirbas, G. (2009), "Stabilization of expansive soils using Bigadic zeolite (boron by-product)", Master Dissertation, Middle East Technical University, Ankara, Turkey.
- Fan, H. and Kong, L. (2013), "Empirical equation for evaluating the dispersivity of cohesive soil", Can. Geotech. J., 50(9), 989-994. https://doi.org/10.1139/cgj-2012-0332.
- Flores-Berrones., R. and Lopez-Acosta, N.P. (2011), "Internal Erosion due to Water Flow through Earth Dams and Earth Structures", INTECH Open Access Publisher.
- Ghrici, M., Kenai, S. and Said-Mansour, M. (2007), "Mechanical properties and durability of mortar and concrete containing natural pozzolana and limestone blended cement", Cement Concrete Compos., 29(7), 542-549. https://doi.org/10.1016/j.cemconcomp.2007.04.009.
- Glavind, M. (2009), "Sustainability of cement, concrete and cement replacement materials in construction", Sustain. Constr. Mater., 120-147. https://doi.org/10.1533/9781845695842.120.
- Iswarya, G. and Beulah, M. (2021), "Use of zeolite and industrial waste materials in high strength concrete-A review", Materials Today: Proceedings, 46, 116-123. https://doi.org/10.1016/j.matpr.2020.06.329.
- Khajeh, A., Jamshidi Chenari, R., MolaAbasi, H. and Payan, M. (2022), "An experimental investigation on geotechnical properties of a clayey soil stabilised with lime and zeolite in base and subbase courses", Road Mater. Pavement Design, 23(12), 2924-2941. https://doi.org/10.1080/14680629.2021.1997789.
- Kolovos, K.G., Asteris, P.G., Cotsovos, D.M., Badogiannis, E. and Tsivilis, S. (2013), "Mechanical properties of soil Crete mixtures modified with metakaolin", Constr. Build. Mater., 47, 1026-1036. https://doi.org /10.1016/j.conbuildmat.2013.06.008.
- Makwin, H.L. (2021), "Investigation of effect of zeolite on strength and microstructure development of cement stabilized clay", Doctoral dissertation, Federal University of Technology, Minna, Nigeria.
- Moghadasnejad, F. and Modarres, A. (2010), "Soil Stabilization with Waterproof Cement for Road Applications ", Amirkabir J. Civil Eng., 42(1), 55-63. https://doi.org/10.22060/CEEJ.2010.155.
- MolaAbasi, H., Kharazmi, P., Khajeh, A., Saberian, M., Chenari, R.J., Harandi, M. and Li, J. (2022), "Low plasticity clay stabilized with cement and zeolite: An experimental and environmental impact study", Resour. Conserv. Recycling, 184. https://doi.org/10.1016/j.resconrec.2022.106408.
- MolaAbasi, H. and Shooshpasha, I. (2016), "Prediction of zeolitecement- sand unconfined compressive strength using polynomial neural Network", Eur. Phys. J. Plus, 131, 1-12. https://doi.org/10.1140/epjp/i2016-16108-5.
- Osinubi, K.J., Yohanna, P. and Eberemu, A.O. (2015), "Cement modification of tropical black clay using iron ore tailing as admixture", J. Transport. Geotech., 5, 35-49. https://doi.org/10.1016/j.trgeo.2015.10.001.
- Roohbakhshan, A. and Kalantari, B. (2016), "Stabilization of clayey soil with lime and waste stone powder", Amirkabir J. Civil Eng., 48(4), 429-438. https://doi.org/10.22060/CEEJ.2016.679.
- Salahudeen, A.B. and Ochepo, J. (2015), "Effect of bagasse ash on some engineering properties of lateritic soil", Jordan J. Civil Eng., 9(4), 1-9.
- Salehi, D. and Heidari, A. (2022), "Embankment dam design with dispersive soil: Solutions and challenges", Geotech. Geol. Eng., 40(8), 4289-4299. https://doi.org/10.21203/rs.3.rs-1033299/v1.
- ShahriarKian, M., Kabiri, S. and Bayat, M. (2021), "Utilization of zeolite to improve the behavior of cement-stabilized soil", Int. J. Geosynthetics and Ground Eng., 7(2), 35. https://doi.org/10.1007/s40891-021-00284-9.
- Shang, H. (2015), "Geotechnical laboratory characterization of sand zeolite mixtures", Master Dissertation, University of Louisville, Kentucky, USA.
- Singh, B., Gahlot, P.K. and Purohit, D.G.M. (2018), "Dispersive Soils Characterization, Problems and Remedies", Int, Res. J. Eng. Tech., 5(6), 2478-2484.
- Sudagar, A., Andrejkovicova, S., Patinha, C., Velosa, A., McAdam, A., da Silva, E.F. and Rocha, F. (2018), "A novel study on the influence of cork waste residue on metakaolinzeolite based geopolymers", Appl. Clay Sci., 152, 196-210. https://doi.org/10.1016/j.clay.2017.11.013.
- Sun, Y.J., Ma, J., Chen, Y.G., Tan, B.H. and Cheng, W.J. (2020), "Mechanical behavior of copper-contaminated soil solidified and stabilized with carbide slag and metakaolin", Environ. Earth Sci., 79(18), 423. https://doi.org/10.1007/s12665-020-09172-3.
- Taherkhani, H. (2016), "Investigation and comparison of compressive strength of clay soils stablized by cement, lime and CBR plus", Modares Civil Eng. J., 16(4), 161-174.
- Van de Graaff, R. and Patterson, R.A. (2001), "Explaining the mysteries of salinity sodicity, SAR and ESP in on-site practice", Conference: Advancing Onsite Wastewater Systems, University of Armidale, NewEngland, September.
- Vogiatzis, D., Kantiranis, N., Filippidis, A., Tzamos, E. and Sikalidis, C. (2012), "Hellenic natural zeolite as a replacement of sand in mortar: mineralogy monitoring and evaluation of its influence on mechanical properties", Geosciences, 2(4), 298-307. https://doi.org/10.3390/geosciences2040298.
- Wianglor, K., Sinthupinyo, S., Piyaworapaiboon, M. and Chaipanich, A. (2017), "Effect of alkali-activated metakaolin cement on compressive strength of mortars", Appl. Clay Sci., 141, 272-279. https://doi.org/10.1016/j.clay.2017.01.025.
- Wu, Z., Deng, Y., Liu, S., Liu, Q., Chen, Y. and Zha, F. (2016), "Strength and micro-structure evolution of compacted soils modified by admixtures of cement and metakaolin", Appl.Clay Sci., 127, 44-51. https://doi.org/10.1016/j.clay.2016.03.040.
- Zhang, T., Yue, X., Deng, Y., Zhang, D. and Liu, S. (2014), "Mechanical behaviour and micro-structure of cement-stabilised marine clay with a metakaolin agent", Constr. Build. Mater., 73, 51-57. https://doi.org/10.1016/j.conbuildmat.2014.09.041.