Abstract
History, which began with the emergence of mankind, has a means of recording. Today, we can check the past through data. Generated data may only be generated and stored at a certain moment, but it is not only continuously generated over a certain time interval from the past to the present, but also occurs in the future, so making predictions using it is an important task. In order to find out trends in the use of time series data among numerous data, this paper analyzes the concept of time series data, analyzes Recurrent Neural Network and Long-Short Term Memory, which are mainly used for time series data analysis in the machine learning field, and analyzes the use of these models. Through case studies, it was confirmed that it is being used in various fields such as medical diagnosis, stock price analysis, and climate prediction, and is showing high predictive results. Based on this, we will explore ways to utilize it in the future.
인류의 출현과 함께 시작된 역사에는 기록이라는 수단이 있기에 현재에 사는 우리는 데이터를 통해 과거를 확인할 수 있다. 생성되는 데이터는 일정 순간에만 발생하여 저장될 수도 있지만, 과거로부터 현재까지 일정 시간 간격 동안 계속해서 생성될 뿐만 아니라 다가올 미래에도 발생함으로써 이를 활용하여 예측하는 것 또한 중요한 작업이다. 본 논문은 수많은 데이터 중에서 시계열 데이터의 활용 동향을 알아보기 위해서 시계열 데이터의 개념에서부터 머신러닝 분야에서 시계열 데이터 분석에 주로 사용되는 Recurrent Neural Network와 Long-Short Term Memory에 대해 분석하고, 이런 모델들을 활용한 사례의 조사를 통해 의료 진단, 주식 시세 분석, 기후 예측 등 다양한 분야에 활용되어 높은 예측 결과를 보이고 있음을 확인하였고, 이를 바탕으로 향후 활용방안에 대하여 모색해본다.