DOI QR코드

DOI QR Code

A Study on Trend Using Time Series Data

시계열 데이터 활용에 관한 동향 연구

  • Shin-Hyeong Choi (Division of Electrical, Control & Instrumentation, Kangwon National University)
  • 최신형 (강원대학교 전기제어계측공학부)
  • Received : 2024.12.10
  • Accepted : 2024.03.20
  • Published : 2024.03.30

Abstract

History, which began with the emergence of mankind, has a means of recording. Today, we can check the past through data. Generated data may only be generated and stored at a certain moment, but it is not only continuously generated over a certain time interval from the past to the present, but also occurs in the future, so making predictions using it is an important task. In order to find out trends in the use of time series data among numerous data, this paper analyzes the concept of time series data, analyzes Recurrent Neural Network and Long-Short Term Memory, which are mainly used for time series data analysis in the machine learning field, and analyzes the use of these models. Through case studies, it was confirmed that it is being used in various fields such as medical diagnosis, stock price analysis, and climate prediction, and is showing high predictive results. Based on this, we will explore ways to utilize it in the future.

인류의 출현과 함께 시작된 역사에는 기록이라는 수단이 있기에 현재에 사는 우리는 데이터를 통해 과거를 확인할 수 있다. 생성되는 데이터는 일정 순간에만 발생하여 저장될 수도 있지만, 과거로부터 현재까지 일정 시간 간격 동안 계속해서 생성될 뿐만 아니라 다가올 미래에도 발생함으로써 이를 활용하여 예측하는 것 또한 중요한 작업이다. 본 논문은 수많은 데이터 중에서 시계열 데이터의 활용 동향을 알아보기 위해서 시계열 데이터의 개념에서부터 머신러닝 분야에서 시계열 데이터 분석에 주로 사용되는 Recurrent Neural Network와 Long-Short Term Memory에 대해 분석하고, 이런 모델들을 활용한 사례의 조사를 통해 의료 진단, 주식 시세 분석, 기후 예측 등 다양한 분야에 활용되어 높은 예측 결과를 보이고 있음을 확인하였고, 이를 바탕으로 향후 활용방안에 대하여 모색해본다.

Keywords

References

  1. Kim. Y. H. (2022). Introduction to Databases(3rd edition). Seoul : Hanbit Academy.
  2. Viktor. M. S. & Kenneth. C. (2013). The World Created by Big Data. Seoul : 21st Century Books.
  3. Wikipedia. (n.d). https://ko.wikipedia.org/wiki/% EC%9E%90%EB%A3%8C
  4. Kim. J. Y. (2013). Database Basics and Practice. Seoul : Hanbit Media.
  5. Mic. & Kimura. M. (2016). First Steps to Database. Seoul : Hanbit Media.
  6. Oracle. (n.d). What is Big Data? (Online). https://www.oracle.com/kr/big-data/what-is-big-data/
  7. Aileen. N. (2021). Practical Time Series Analysis. Seoul : Hanbit Media.
  8. Kim. E. D., Ko. S. K., Son. S.C. & Lee. B.T. (2021). Technical Trends of Time-Series Data Imputation, Electronics and Telecommunications Trends, 36(4).
  9. Park. S. Y. & Moon. B. H. (2000), Similarity Search in Time-Series Databases Using Decomposition Method, Korea Computer Congress 2000, 27(2), 110-112.
  10. Kim. H. W. (2004). Cyclical Analysis on the Composite Indexes of Business Indicators, Journal of the Korean Official Statistics, 9(1), 29-52.
  11. Jeon. I. J. (2022). One month study-data analysis. Seoul : Discovery Media.
  12. Lee. H. Y. & Lee. P. Y. (2003). Learning statistics through stories. Paju : Jayu Academy.
  13. Jin. Y. H., Ji. S. H. & HAN. K. H. (2021). Time Series Data Analysis and Prediction System using PCA, Journal of The Korea Convergence Society, 12(11), 99-107. https://doi.org/10.15207/JKCS.2021.12.11.099
  14. Choi. B. S. (2001). Univariate time series analysis. Seoul : Segyeongsa.
  15. Kang. C. G. (2006). Comparative analysis of time series forecasting techniques, Quarterly National Accounts, 3(26), 80-105.
  16. Cho. S. S. & Son. Y. S. (2002). Time series analysis using SAS/ETS. Seoul : Yulgok Publishing.
  17. Park. H. J., Seok. K. H., Shim. J. Y. & Hwang. C. H. (2019). Learning deep learning with TensorFlow. Seoul : Hanbit Academy.
  18. Oh. O. S. (2021). Artificial intelligence made with Python. Seoul : Hanbit Academy.
  19. Shin. H. K. (2019). Time Series Forecasting on Car Accidents in Korea Using Auto-Regressive Integrated Moving Average Model-. Journal of Convergence for Information Technology. 9(12), 54-61.
  20. Oh. J. M., Shin. H. S., Shin Y. S., Jeong H. C.(2017). Forecasting the Particulate Matter in Seoul using a Univariate Time Series Approach, Journal of The Korean Data Analysis Society, 19(5), 2457-2468. DOI : 10.37727/jkdas.2017.19.5.2457
  21. Bae. S. W., Yu. J. S. (2018), Predicting the Real Estate Price Index Using Machine Learning Methods and Time Series Analysis Model, Housing Studies Review, 26(1), 107-133. DOI : 10.24957/hsr.2018.26.1.107
  22. Song. H. J., Choi. H. S., Kim S. W., Oh. S. H. (2019), A Study on Financial Time Series Data Volatility Prediction Method Using AI's LSTM Method, Journal of Knowledge Information Technology and Systems 14(6), 665-673. DOI : 10.34163/jkits.2019.14.6.009