DOI QR코드

DOI QR Code

An experimental study on a steel multi-slit damper for seismic retrofit of soft-first story structures

  • 투고 : 2023.03.30
  • 심사 : 2024.02.28
  • 발행 : 2024.03.25

초록

In this research, the efficiency of a metallic energy dissipation device for seismic retrofit of an existing structure is evaluated by cyclic loading test. The proposed device, which is called multi-slit damper, is made of weak and strong slit dampers connected in series. Its energy dissipation mechanism consists of two stages: (i) yielding of the weak-slit damper under minor earthquakes; (ii) restraint of further deformations of the weak slit damper and activation of the strong slit damper under major earthquakes using a gap mechanism. A reinforced concrete (RC) frame with characteristics similar to soft-first-story structures is tested under cyclic loading before and after retrofit using the proposed device. The details of the experimental study are described and the test is simulated in an available commercial software to validate the analytical model of the damper. To further verify the applicability of the damper, it is applied to an analysis model of a 4-story structure with soft first story and its seismic performance is evaluated before and after retrofit. The experimental and analysis results show that the multi-slit damper is effective in controlling seismic response of structures.

키워드

과제정보

This paper was supported by Samsung Research Fund, Sungkyunkwan University, 2023.

참고문헌

  1. ACI (2005), Acceptance Criteria for Moment Frames Based on Structural Testing and Commentary (ACI 374.1-05). Farmington Hills, MI: American Concrete Institute.
  2. ACI (American Concrete Institute) (2014), Building Code Requirements for Structural Concrete (ACI 318M-14) and Commentary (ACI 318RM-14). Farmington Hills, MI: American Concrete Institute (ACI).
  3. Beigi, H.A., Christopoulos, C., Sullivan, T. and Calvi, G.M. (2014), "Gapped-inclined braces for seismic retrofit of softstory buildings", J. Struct. Eng., 140(11), 04014080. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001006.
  4. Agha Beigi, H., Christopoulos, C., Sullivan, T. and Calvi, M. (2015), "Seismic response of a case study soft story frame retrofitted using a GIB system", Earthq. Eng. Struct. Dyn., 44(7), 997-1014. https://doi.org/10.1002/eqe.2496.
  5. ASCE (2013), Seismic Rehabilitation of existing buildings. ASCE/SEI 41-13. Reston, VA: ASCE.
  6. Bruschi, E., Quaglini, V. and Calvi, P.M. (2022), "A simplified design procedure for seismic upgrade of frame structures equipped with hysteretic dampers", Eng. Struct., 251, 113504. https://doi.org/10.1016/J.ENGSTRUCT.2021.113504.
  7. Computers and Structures Inc. (CSI), (2017), SAP2000, Berkeley, CA.
  8. Dereje, A.J. and Kim, J. (2022), "Optimal seismic retrofit design method for asymmetric soft first-story structures", Struct. Eng. Mech., 81(6), 6770689. https://doi.org/10.12989/SEM.2022.81.6.677.
  9. FEMA (2009), Quantification of building seismic performance factors, FEMA P695. Washington, DC, Federal Emergency Management Agency.
  10. Gandelli, E., Chernyshov, S., Distl, J., Dubini, P., Weber, F. and Taras, A. (2021), "Novel adaptive hysteretic damper for enhanced seismic protection of braced buildings", Soil Dyn. Earthq. Eng., 141, 106522. https://doi.org/10.1016/J.SOILDYN.2020.106522.
  11. Javidan, M.M., Chun, S. and Kim, J. (2021), "Experimental study on steel hysteretic column dampers for seismic retrofit of structures", Steel Compos. Struct., 40(4), 495-509. https://doi.org/10.12989/SCS.2021.40.4.495.
  12. Javidan, M.M., Nasab, M.S.E. and Kim, J. (2021), "Full-scale tests of two-story RC frames retrofitted with steel plate multi-slit dampers", Steel Compos. Struct, 39(5), 645-664. https://doi.org/10.12989/SCS.2021.39.5.645.
  13. Javidan, M.M. and Kim, J. (2019), "Seismic retrofit of soft-first story structures using rotational friction dampers", J. Struct. Eng., 145(12): 04019162.
  14. Javidan, M.M. and Kim, J. (2020), "Steel hysteretic column dampers for seismic retrofit of soft-first-story structures", Steel Compos. Struct., 37(3), 259-272. https://doi.org/10.12989/SCS.2020.37.3.259.
  15. Lee, J., Kang, H. and Kim, J. (2017), "Seismic performance of steel plate slit-friction hybrid dampers", J. Constr. Steel Res, 136, 128-139. https://doi.org/10.1016/J.JCSR.2017.05.005.
  16. Lee, J. and Kim, J. (2017), "Development of box-shaped steel slit dampers for seismic retrofit of building structures", Eng. Struct., 150, 934-946. https://doi.org/10.1016/J.ENGSTRUCT.2017.07.082.
  17. Mazza, F., Mazza, M. and Vulcano, A. (2018), "Base-isolation systems for the seismic retrofitting of r.c. framed buildings with soft-storey subjected to near-fault earthquakes", Soil Dyn. Earthq. Eng., 109, 209-221. https://doi.org/10.1016/J.SOILDYN.2018.02.025.
  18. Mohammadi, M., Kafi, M.A., Kheyroddin, A. and Ronagh, H.R. (2019), "Experimental and numerical investigation of an innovative buckling-restrained fuse under cyclic loading", Structures, 22, 186-199. https://doi.org/10.1016/J.ISTRUC.2019.07.014.
  19. Mohammadi, M., Kafi, M.A., Kheyroddin, A. and Ronagh, H. (2020), "Performance of innovative composite bucklingrestrained fuse for concentrically braced frames under cyclic loading", Steel Compos. Struct., 36, 163-177. https://doi.org/10.12989/SCS.2020.36.2.163.
  20. Mokhtari, E., Laghi, V., Palermo, M. and Silvestri, S. (2021), "Quasi-static cyclic tests on a half-scaled two-storey steel frame equipped with Crescent Shaped Braces", Eng. Struct., 232, 111836. https://doi.org/10.1016/J.ENGSTRUCT.2020.111836.
  21. Naeem, A., Eldin, M.N., Kim, J. and Kim, J. (2017), "Seismic performance evaluation of a structure retrofitted using steel slit dampers with shape memory alloy bars", Int. J. Steel Struct., 17, 1627-1638. https://doi.org/10.1007/s13296-017-1227-4.
  22. Naeem, A. and Kim, J. (2019), "Seismic performance evaluation of a multi-slit damper", Eng. Struct., 189, 332-346. https://doi.org/10.1016/J.ENGSTRUCT.2019.03.107.
  23. Oncu-Davas, S. and Alhan, C. (2019), "Probabilistic behavior of semi-active isolated buildings under pulse-like earthquakes", Smart Struct. Syst., 23(3), 227-242. https://doi.org/10.12989/sss.2019.23.3.227.
  24. Kutay, O., Massone Sanchez, L.M. and Wallace, J.W. (2006), "Analytical modeling of reinforced concrete walls for predicting flexural and coupled-shear-flexural responses", Los Angeles: PEER.
  25. PEER (2014), "PEER NGA Database", PEER Ground Motion Database. https://ngawest2.berkeley.edu/.
  26. Quaglini, V., Pettorruso, C. and Bruschi, E. (2022), "Design and experimental assessment of a prestressed lead damper with straight shaft for seismic protection of structures", Geosci., 12(5), 182. Multidisciplinary Digital Publishing Institute. https://doi.org/10.339"0/GEOSCIENCES12050182. https://doi.org/10.339'0/GEOSCIENCES12050182
  27. Terenzi, G., Sorace, S. and Fuso, E. (2023), "Stiffening effectscontrolling sizing procedure of ADAS dampers in seismic retrofit of frame structures", Front Built Environ, 9, 1114349. https://doi.org/10.3389/FBUIL.2023.1114349/BIBTEX.
  28. Xu, Z. D., Xu, F.H. and Chen, X. (2016), "Vibration suppression on a platform by using vibration isolation and mitigation devices", Nonlinear Dyn., 83(3), 1341-1353. https://doi.org/10.1007/S11071-015-2407-4/TABLES/6.
  29. Yousef-beik, S.M.M., Veismoradi, S., Zarnani, P. and Quenneville, P. (2020), "A new self-centering brace with zero secondary stiffness using elastic buckling", J Constr. Steel Res., 169, 106035. https://doi.org/10.1016/j.jcsr.2020.106035.