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1. Introduction

In this paper, we investigate the distribution of zeros of the Bernoulli-Fibonacci
polynomials by using computer. Throughout this paper, we always make use of
the following notations: Z+ denotes the set of nonnegative integers, Z denotes
the set of integers, R denotes the set of all real numbers and C denotes the set
of complex numbers, respectively.

The authors [1, 2, 4] introduced generating functions for Bernoulli numbers
Bn and Bernoulli polynomials Bn(x)B as follow
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Now, we give some definitions (for these definitions see [11, 12]) that we will use
throughout the article. The F -factorial is defined as

Fn! = Fn · Fn−1 · Fn−2 · · ·F1, F0! = 1.

where Fn is n-th Fibonacci numbers. The Fibonomial coefficients are defined as
(0 ≤ k ≤ n) as (
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with
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The binomial theorem for the F -analogues (or-Golden binomial theorem) are
given by
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The F -exponential functions eF (x) and EF (x) are defined as:
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The following identity holds
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The author [6] defined generating functions for Bernoulli-Fibonacci numbers
Bn,F and Bernoulli-Fibonacci polynomials Bn,F (x)B as follow

∞∑
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Theorem 1.1. For n ≥ 1, we have
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(4) Bn,F (1) = Bn,F (n = 2, 3, . . .).

For the first few Bernoulli-Fibonacci numbers we have,
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2. Zeros of the Bernoulli-Fibonacci polynomials

This section aims to demonstrate the benefit of using numerical investigation
to support theoretical prediction and to discover new interesting pattern of the
zeros of the Bernoulli-Fibonacci polynomials Bn,F (x). The Bernoulli-Fibonacci
polynomials Bn,F (x). can be determined explicitly. A few of them are
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We investigate the zeros of the Bernoulli-Fibonacci polynomials Bn,F (x) = 0.
by using a computer. We plot the zeros of the Bernoulli-Fibonacci polynomials
Bn,F (x) = 0 for x ∈ C(Figure 1). In Figure 1(top-left), we choose n = 10.
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Figure 1. Zeros of Bn,F (x) = 0

In Figure 1(top-right), we choose n = 20. In Figure 1(bottom-left), we choose
n = 30. In Figure 1(bottom-right), we choose n = 40.
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Stacks of zeros of the Bernoulli polynomials Bn(x) = 0 for 1 ≤ n ≤ 40 from
a 3-D structure are presented(Figure 2).

Figure 2. Stacks of zeros of Bn(x) = 0 for 1 ≤ n ≤ 40

Stacks of zeros of the Bernoulli-Fibonacci polynomials Bn,F (x) = 0 for 1 ≤
n ≤ 40 from a 3-D structure are presented(Figure 3).

Figure 3. Stacks of zeros of Bn,F (x) = 0 for 1 ≤ n ≤ 40
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The plot of real zeros of Bernoulli polynomials Bn(x) = 0 for 1 ≤ n ≤ 40
structure are presented(Figure4).

Figure 4. Real zeros of Bn(x) = 0 = 0 for 1 ≤ n ≤ 40

The plot of real zeros of Bernoulli-Fibonacci polynomials Bn,F (x) = 0 for
1 ≤ n ≤ 40 structure are presented(Figure 5).

Figure 5. Real zeros of Bn,F (x) = 0 = 0 for 1 ≤ n ≤ 40
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Next, we calculated an approximate solution satisfying Bernoulli-Fibonacci
polynomials Bn,F (x) = 0 for x ∈ C. The results are given in Table 1.

Table 1. Approximate solutions of Bn,F (x) = 0

degree n x

1 1.0000

2 0.50000− 0.50000i, 0.50000 + 0.50000i

3 0.26234− 0.39638i, 0.26234 + 0.39638i, 1.4753

4 0.14713− 0.35231i, 0.14713 + 0.35231i,

1.3529− 0.4773i, 1.3529 + 0.4773i

5 0.04058− 0.41592i, 0.04058 + 0.41592i,

0.95161− 0.53031i, 0.95161 + 0.53031i, 3.0156

6 −0.06994− 0.54598i, −0.06994 + 0.54598i, 0.71994− 0.55355i,

0.71994 + 0.55355i, 2.4233, 4.2767

7 −0.11416− 0.76340i, −0.11416 + 0.76340i,

0.47243− 0.60161i, 0.47243 + 0.60161i

2.2038, 2.7203, 7.3594

8 −0.15336− 1.25842i, −0.15336 + 1.25842i, 0.24703− 0.50658i,

0.24703 + 0.50658i, 1.8748− 0.5775i, 1.8748 + 0.5775i

5.4031, 11.660

9 −0.2542− 2.0107i, −0.2542 + 2.0107i, 0.15483− 0.45665i,

0.15483 + 0.45665i, 1.3733− 0.7612i, 1.3733 + 0.7612i

4.1436, 8.2847, 19.024
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