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ITERATION OF 2× 2 MATRICES IN Z4 AND THEIR

FOUR COLOR EXPRESSIONS (I)†

DAEYEOUL KIM

Abstract. The aim of this article is to consider the sequences generated by
repeatedly performing matrix multiplication operations, define the stable,

amicable pair, sociable matrix sequences, and analyze the results obtained

through iteration. Lastly, numbers are changed to colors to make them
easier to understand.
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1. Introduction

We first clarify that the results of this article may not be new results, but we
hope that they will be understood as the results of reinterpreting the meaning
of the newly iteration matrix. The Cayley-Hamilton theorem [5, p.70-71] states
that square matrix over a commutative ring satisfies its own characteristic equa-

tion. In particular, for 2×2 matrix, A =

(
a b
c d

)
, the characteristic polynomial

[3, p.200] is given by p(X) := X2− (a+d)X+(ad− bc), so the Cayley-Hamilton
theorem states that

p(A) := A2 − (a+ d)A+ (ad− bc)I = O. (1)

Here, I =

(
1 0
0 1

)
, O =

(
0 0
0 0

)
and An := A · · ·A︸ ︷︷ ︸

n times

.
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Let Z4 be the ring of residue classes modulo 4,

M2(Z4) :=

{(
a b
c d

)
|a, b, c, d ∈ Z4

}
and

Md
2 (Z4) :=

{(
a b
c d

)
∈ M2(Z4)|a, b, c, d are all distinct

}
.

We easily know that |M2(Z4)| = 44 and |Md
2 (Z4)| = 24.

To understand Md
2 (Z4) accurately, let the elements of Md

2 (Z4) be

A1 :=

(
1 2
3 0

)
, A2 :=

(
1 0
2 3

)
, A3 :=

(
0 2
1 3

)
, A4 :=

(
0 1
3 2

)
,

A5 :=

(
1 2
0 3

)
, A6 :=

(
1 3
0 2

)
, A7 :=

(
0 2
3 1

)
, A8 :=

(
1 3
2 0

)
,

A9 :=

(
1 0
3 2

)
, A10 :=

(
0 1
2 3

)
, A11 :=

(
0 3
2 1

)
, A12 :=

(
0 3
1 2

)
,

A13 :=

(
2 3
0 1

)
, A14 :=

(
2 3
1 0

)
, A15 :=

(
2 1
0 3

)
, A16 :=

(
2 1
3 0

)
,

A17 :=

(
2 0
1 3

)
, A18 :=

(
2 0
3 1

)
, A19 :=

(
3 0
1 2

)
, A20 :=

(
3 0
2 1

)
,

A21 :=

(
3 1
0 2

)
, A22 :=

(
3 1
2 0

)
, A23 :=

(
3 2
0 1

)
, A24 :=

(
3 2
1 0

)
.

Let Ai : Ai → A2
i → A3

i → ... be the matrix sequence of Ai.
A sociable(periodic) matrix sequence Ai is a sequence for which the same

terms are repeated over and over:

· · · → Am
i → · · · → Am+l

i → Am
i → · · · → Am+l

i → · · · .

if l = 0, that is,

· · · → Am−1
i → Am

i → Am
i → Am

i → · · · ,

then Ai is a stable matrix sequence, and if l = 1, that is,

· · · → Am−1
i → Am

i → Am+1
i → Am

i → Am+1
i → Am

i → Am+1
i → · · · ,

Ai is an amicable pair matrix sequence for some m ∈ N. Referring to Figure
1, it is easy to understand the notations of sociable, amicable pair and stable
matrix sequence.

Let
∑l

j=0

(
a b
c d

)m+j

=

(
a′ b′

c′ d′

)
and a′ + b′ + c′ + d′ ≡ k (mod 4).

For the three cases above, let’s define Per(Ai) = l+1, Ord(Ai) = m, T l(Ai) =
m + l and Ty(Ai) = k. We call Per(Ai) the period length of Ai, Ord(Ai) the
order of Ai and Ty(Ai) the k-type Ai. If m cannot be found, that is, for sequence
Ai other than the three cases above, we set Ord(Ai) = ∞.

The concepts of stable matrix sequence, amicable pair matrix sequence, so-
ciable matrix sequence, and order of matrix sequence were introduced exactly
as defined in the iterated divisor functions defined in [1], [2].
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Figure 1. Stable, Amicable pair and Sociable matrix
sequences

In this paper, the following results were obtained regarding stable, amicable,
and sociable for the matrices of Md

2 (Z4).

Theorem 1.1. Let Ai ∈ Md
2 (Z4) and Ai be the matrix sequences of Ai.

(a) Ai are stable matrix sequences with Ord(Ai) = 2 if and only if i ∈
{3, 6, 9, 10, 13, 18, 22, 24}.

(b) Ai are amicable matrix sequences with Ord(Ai) = 1 if and only if i ∈
{2, 5, 20, 23}.

(c) Ai are amicable matrix sequences with Ord(Ai) = 2 if and only if i ∈
{1, 7, 8, 11, 15, 17, 19, 21}.

(d) Ai are sociable matrix sequences with Ord(Ai) = 1 and Per(Ai) = 4 if
and only if i ∈ {4, 12, 14, 16}.

Actually, when k = 0, we think the sequence is a little easier to understand.
So we define a period that extends beyond the existing period. In other words,
when k = 0, the period is called a perfect period. And the perfect period length
of sequence Ai is written as P (Ai). For example, let’s look at A3 below.

A3 : A3 =

(
0 2
1 3

)
→ A2

3 =

(
2 2
3 3

)
⟲.

Then Per(A3) = 1 but P (A3) = 2. If the sequence A3 is expressed as a
sequence in terms of a perfect period, it is

A3 : A1 =

(
0 2
1 3

)
→ A2

1 =

(
2 2
3 3

)
⇄ A3

1 =

(
2 2
3 3

)
.

Theorem 1.2. Let Ai ∈ Md
2 (Z4) and Ai be the matrix sequences of Ai.

(a) There is no stable matrix with respect to the perfect period.
(b) Ai are amicable matrix sequences with respect to the perfect period and

Ord(Ai) = 1 if and only if i ∈ {2, 5, 20, 23}.
(c) Ai are amicable matrix sequences with respect to the perfect period and

Ord(Ai) = 2 if and only if i ∈ {1, 7, 8, 11, 15, 17, 19, 21}∪{3, 6, 9, 10, 13, 18, 22, 24}.
(d) Ai are sociable matrix sequences with respect to the perfect period and

Ord(Ai) = 1 and Per(Ai) = 4 if and only if i ∈ {4, 12, 14, 16}.
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2. Proofs of Theorem 1.1 and 1.2

Unless otherwise specified, it is assumed in this section that Ai ∈ Md
2 (Z4)

and p(Ai) = A2
i + αAi + βE.

Lemma 2.1. Let Ai1 :=

(
a b
c d

)
, Ai2 :=

(
d b
c a

)
, Ai3 :=

(
a c
b d

)
and Ai4 :=(

d c
b a

)
. If k, l ∈ {1, 2, 3, 4} then Ord(Aik) = Ord(Ail) and Per(Aik) = Per(Ail).

Proof. It is well-known that

A2
ik

= (a+ d)Aik − (ad− bc)I (2)

with k ∈ {1, 2, 3, 4}. Using (2), there exist b and c in Z4 that satisfy An
ik

=
bAik + cI and An

i1
= An

i2
= An

i3
= An

i4
with n ∈ N. Therefore, we derive the

proof of Lemma 2.1. □

Lemma 2.2. If β ≡ 1 (mod 2) then Ord(Ai) = 1.

Proof. Let Ai =

(
a b
c d

)
. If β ≡ 1 (mod 2) then

p(Ai) = A2
i − (a+ d)Ai + (ad− bc)I ≡ A2

i − 2Ai + I (mod 4) (3)

or

p(Ai) ≡ A2
i − I (mod 4). (4)

It is easily checked that A4
i = I by (3) and (4). This completes the proof of

Lemma 2.2. □

Lemma 2.3. If β ≡ 2 (mod 4) then Ord(Ai) = 2.

Proof. Using ad − bc ≡ 2 (mod 4) and a, b, c, d are distinct in Z4, we obtain
a + d ≡ 1 (mod 2). If α ≡ 1 (mod 2) then p(Ai) ≡ A2

i ± Ai + 2I (mod 4). So,
we get

A4
i = A2

i ± 4Ai + 4I = A2
i

and A2
i = A2k

i with k ∈ N. Since
(
a b
c d

)
̸=

(
a+ 2 b
c d+ 2

)
and

(
a b
c d

)
̸=(

−a+ 2 −b
−c −d+ 2

)
, we obtain A2

i ̸= Ai.

If A2
i +Ai + 2I = O then A3

i = 3Ai + 2I = −Ai + 2I = A2
i .

Hence, Ai ̸= A2
i = A2+k

i with k ∈ N.
If A2

i −Ai + 2I = O then A3
i = 3Ai + 2I ̸= Ai + 2I = A2

i . Since Ai ̸= −I, we
derive that Ai ̸= 3Ai + 2I = A3

i . So, we get

Ai → A2
i → A3

i → A2
i → A3

i → · · · .

Lemma 2.3 is obtained. □
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Proof of Theorem 1.1

The matrices that satisfy (4) are A2 =

(
1 0
2 3

)
, A5 =

(
1 2
0 3

)
, A20 =

(
3 0
2 1

)
and A23 =

(
3 2
0 1

)
by Lemma 2.1. Thus we obtain (b), that is, Ai → I → Ai →

I → · · · with i ∈ {2, 5, 20, 23}.
By (3), (d) is obtained. In other words, it is the same as the problem of

finding matrices in Md
2 (Z4) that satisfy the conditions a + d ≡ 2 (mod 4) and

ad − bc ≡ 1 (mod 4). Therefore, if ad is an even number (resp., odd number),
bc is an odd number (resp., even number). The matrices that satisfy (3) are

A4 =

(
0 1
3 2

)
, A12 =

(
0 3
1 2

)
, A14 =

(
2 3
1 0

)
and A16 =

(
2 1
3 0

)
by Lemma

2.1.

Consider A1 =

(
1 2
3 0

)
and A15 =

(
2 1
0 3

)
. The characteristic polynomial of

these two matrices is p(X) ≡ X2 −X + 2 (mod 4). By Lemma 2.3, Ai ̸= A3
i ̸=

A2
i ̸= Ai and A2

i ̸= A4
i with i ∈ {1, 15}.

By Lemma 2.1, we have that Ai(i ∈ {1, 7, 8, 11, 15, 17, 19, 21}) are amicable
matrix sequences with Ord(Ai) = 2. Thus (c) is obtained.

Finally, we consider A3 =

(
0 2
1 3

)
and A13 =

(
2 3
0 1

)
. The characteristic

polynomial of these two matrices is p(X) ≡ X2 + X + 2 (mod 4). By Lemma
2.3, Ai ̸= A2

i = A3
i with i ∈ {3, 13}. By Lemma 2.1, we obtain that Ai(i ∈

{3, 6, 9, 10, 13, 18, 22, 24}) are stable matrix sequences with Ord(Ai) = 2. Thus
(a) is obtained. □

Lemma 2.4. Let A :=

(
a1 b1
c1 d1

)
∈ Md

2 (Z4) and An :=

(
an bn
cn dn

)
with n ∈ N.

Then TS(An) := an + bn + cn + dn ≡ 2 (mod 4).

Proof. It is easily checked that

a1 + b1 + c1 + d1 = 0 + 1 + 2 + 3 ≡ 2 (mod 4).

If a1 ≡ d1 (mod 2) then a1 + d1 ≡ 0 (mod 2) and a1d1 − b1c1 ≡ 1 (mod 2). On
the other hand, if a1 ̸≡ d1 (mod 2) then a1+d1 ≡ 1 (mod 2) and a1d1−b1c1 ≡ 0
(mod 2). Thus we obtain

a1 + d1 ̸≡ a1d1 − b1c1 (mod 2). (5)

Recall that
A2 = (a+ d)A− (ad− bc)E (6)

by (1). It follows from (5) and (6) that

a2 + b2 + c2 + d2 ≡ 2(a1 + d1) + 2(a1d1 − acc1) ≡ 2 (mod 4).

Assume that ai+ bi+ ci+di ≡ 2 (mod 4) with 1 ≤ i ≤ n− 1. By (5), we obtain
An = (a+ d)An−1 − (ad− bc)An−2 and

an + bn + cn + dn ≡ 2(a1 + d1) + 2(a1d1 − acc1) ≡ 2 (mod 4).
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By induction method, we derive the proof of Lemma 2.4. □

Proof of Theorem 1.2
If Per(Ai) is an even number, it can be seen from Lemma 2.4 that Per(Ai) =

P (Ai). Therefore, in all cases (b),(c) and (d) of Theorem 1, we obtain that
Per(Ai) = P (Ai). In the case of stable sequences in Theorem 1.1 (a), the value
of Per(Ai) becomes an odd number, so in order for P (Ai) = 0, it is necessary
to regard them as an amicable pair even though they have the same value. In
other words, it is considered an amicable pair sequence as shown below.

Ai : Ai =

(
a1 b1
c1 d1

)
→ A2

i =

(
a2 b2
c2 d2

)
⇄ A3

i =

(
a2 b2
Cc2 d2

)
.

There is no stable matrix with respect to the perfect period. This completes the
proof of Thoerem 1.2. □

For easy understanding, below are the calculations of whether the 24 matrix
sequences(A1 ∼ A24) are stable, amicable, and sociable matrix sequence.

A1 : A1 =

(
1 2
3 0

)
→ A2

1 =

(
3 2
3 2

)
⇄ A3

1 =

(
1 2
1 2

)
,

P er(A1) = 2, Ord(A1) = 2, T l(A1) = 3.

A2 : A2 =

(
1 0
2 3

)
⇄ A2

2 =

(
1 0
0 1

)
,

P er(A2) = 2, Ord(A2) = 1, T l(A2) = 2.

A3 : A3 =

(
0 2
1 3

)
→ A2

3 =

(
2 2
3 3

)
⟲,

P er(A3) = 1, Ord(A1) = 2, T l(A1) = 2.

A4 : A4 =

(
0 1
3 2

)
→ A2

4 =

(
3 2
2 3

)
→ A3

4 =

(
2 3
1 0

)
→ A4

4

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
=

(
1 0
0 1

)
,

P er(A4) = 4, Ord(A4) = 1, T l(A4) = 4.

A5 : A5 =

(
1 2
0 3

)
⇄ A2

5 =

(
1 0
0 1

)
,

P er(A5) = 2, Ord(A5) = 1, T l(A5) = 2.

A6 : A6 =

(
1 3
0 2

)
→ A2

6 =

(
1 1
0 0

)
⟲,

P er(A6) = 1, Ord(A6) = 2, T l(A6) = 2.

A7 : A7 =

(
0 2
3 1

)
→ A2

7 =

(
2 2
3 3

)
⇄ A3

7 =

(
2 2
1 1

)
,

P er(A7) = 2, Ord(A7) = 2, T l(A7) = 3.

A8 : A8 =

(
1 3
2 0

)
→ A2

8 =

(
3 3
2 2

)
⇄ A3

8 =

(
1 1
2 2

)
,

P er(A8) = 2, Ord(A8) = 2, T l(A8) = 3.

A9 : A9 =

(
1 0
3 2

)
→ A2

9 =

(
1 0
1 0

)
⟲,

P er(A9) = 1, Ord(A9) = 2, T l(A9) = 2.

A10 : A10 =

(
0 1
2 3

)
→ A2

10 =

(
2 3
2 3

)
⟲,

P er(A10) = 1, Ord(A10) = 2, T l(A10) = 2.



Iteration of 2 × 2 matrices in Z4 and their four color expressions (I) 43

A11 : A11 =

(
0 3
2 1

)
→ A2

11 =

(
2 3
2 3

)
⇄ A3

11 =

(
2 1
2 1

)
,

P er(A11) = 2, Ord(A11) = 2, T l(A11) = 3.

A12 : A12 =

(
0 3
1 2

)
→ A2

12 =

(
3 2
2 3

)
→ A3

12 =

(
2 1
3 0

)
→ A4

12

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
=

(
1 0
0 1

)
,

P er(A12) = 4, Ord(A12) = 1, T l(A12) = 4.

A13 : A13 =

(
2 3
0 1

)
→ A2

13 =

(
0 1
0 1

)
⟲,

P er(A13) = 1, Ord(A13) = 2, T l(A13) = 2.

A14 : A14 =

(
2 3
1 0

)
→ A2

14 =

(
3 2
2 3

)
→ A3

14 =

(
0 1
3 2

)
→ A4

14

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
=

(
1 0
0 1

)
,

P er(A14) = 4, Ord(A14) = 1, T l(A14) = 4.

A15 : A15 =

(
2 1
0 3

)
→ A2

15 =

(
0 1
0 1

)
⇄ A3

15 =

(
0 3
0 3

)
,

P er(A15) = 2, Ord(A15) = 2, T l(A15) = 3.

A16 : A16 =

(
2 1
3 0

)
→ A2

16 =

(
3 2
2 3

)
→ A3

16 =

(
0 3
1 2

)
→ A4

16

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
=

(
1 0
0 1

)
,

P er(A16) = 4, Ord(A16) = 1, T l(A16) = 4.

A17 : A17 =

(
2 0
1 3

)
→ A2

17 =

(
0 0
1 1

)
⇄ A3

17 =

(
0 0
3 3

)
,

P er(A17) = 2, Ord(A17) = 2, T l(A17) = 3.

A18 : A18 =

(
2 0
3 1

)
→ A2

18 =

(
0 0
1 1

)
⟲,

P er(A18) = 1, Ord(A18) = 2, T l(A18) = 2.

A19 : A19 =

(
3 0
1 2

)
→ A2

19 =

(
1 0
1 0

)
⇄ A3

19 =

(
3 0
3 0

)
,

P er(A19) = 2, Ord(A19) = 2, T l(A19) = 3.

A20 : A20 =

(
3 0
2 1

)
⇄ A2

20 =

(
1 0
0 1

)
,

P er(A20) = 2, Ord(A20) = 1, T l(A20) = 2.

A21 : A21 =

(
3 1
0 2

)
→ A2

21 =

(
1 1
0 0

)
⇄ A3

21 =

(
3 3
0 0

)
,

P er(A21) = 2, Ord(A21) = 2, T l(A21) = 3.

A22 : A22 =

(
3 1
2 0

)
→ A2

22 =

(
3 3
2 2

)
⟲,

P er(A22) = 1, Ord(A22) = 2, T l(A22) = 2.

A23 : A23 =

(
3 2
0 1

)
⇄ A2

23 =

(
1 0
0 1

)
,

P er(A23) = 1, Ord(A23) = 2, T l(A23) = 2.

A24 : A24 =

(
3 2
1 0

)
→ A2

24 =

(
3 2
3 2

)
⟲,

P er(A24) = 1, Ord(A24) = 2, T l(A24) = 2.

3. Maxtrix sequences expressed in 4 colors

First, let’s change 0, 1, 2, and 3 to to four colors as shown in Figure 2.
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Figure 2. Four colors: 0, 1, 2, 3

Figure 3. Stable and Sociable matrix sequences

The cases of the stable matrix sequences (Figure 3), the amicable pair matrix
sequences (Figure 4), and the sociable matrix sequences (Figure 3) are repre-
sented in Figure 3, 4. It is easy to understand that the four matrices that satisfy
Lemma 2.1 have the same form as long as the positions are changed.

That is, in fact, we only need to check whether the six matrix sequences(A1,
A2, A3, A4, A6, A15) are amicable, sociable, and stable.

Looking at the Figures 3 and 4, it is very easy to understand how the matrix
sequence changes.

Remark 3.1. Looking at Figure 3 and 4, A4
i = I but A2

i = −I cannot be
found in Md

2 (Z4). In other words, we can see that the matrix Ai that satisfies
A2

i = −I does not exist in Md
2 (Z4). This may not seem difficult even using the

Cayley-Hamilton theorem.

Remark 3.2. It is well known [4, p.89] that the 4-torsion group in elliptic curves
has the structure of Z4⊕Z4. The 24 matrix sequences of this article can also be
interpreted as the endormorphism of E[4]. Here, E[4] = {P ∈ E|4P = ∞} and
∞ is the point at infiinity in E.

4. Discussion

Matrices are a very fundamental research topic in economics, physics, biology,
and engineering. Matrix theory is also fundamentally used in the fields of AI,
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Figure 4. Amicable pair matrix sequences

robotics, and medical mathematics, which have been actively studied recently.
The iterated matrix defined on Z4 studied in this paper can be usefully used
to find the automorphism group of an elliptic curve. Future research will be
conducted on the results for the overall case, rather than for different cases,
and the study is planned to utilize this to construct a polyhedron. Lastly, in
the future, the structures obtained from subgroups obtained through repeated
execution of matrices have interesting structures, and we plan to conduct joint
research with researchers majoring in art.
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