DOI QR코드

DOI QR Code

The Short-term Safety Factor Considering Passive Resistance Effect of Bar Anchor Based on Smart Construction

스마트 건설기반의 강봉앵커 수동저항 효과를 고려한 단기 안전율

  • Received : 2024.02.29
  • Accepted : 2024.03.19
  • Published : 2024.04.01

Abstract

This is an analytical study to confirm the passive resistance effect before post-tensioning of steel bar anchors. When using a steel bar as a permanent anchor, if displacement occurs within the slope even before the head load is applied, the displacement is suppressed by the passive resistance caused by the interaction between the steel bar, grout, and surrounding soil. Accordingly, the shape of the failure surface and changes in the safety factor were examined using limit equilibrium analysis and finite element analysis targeting sites where steel bar anchors were actually applied. It was found that the safety factor of the slope reinforced with steel bar anchors is 2.02 using finite element analysis, which is about 5.9% smaller than 2.14 using limit equilibrium analysis. Also, the location of the failure surface was found to be deeper compared to the unreinforced slope. Likewise, the factor of safety has a 153% and 163% increase using finite element method and limit equilibrium analysis, respectively. In addition, the maximum displacement occurs in the lower unreinforced section within the slope, and the displacement is found to be reduced by 42 to 83% at the location where the steel bar anchors are installed.

본 연구는 강봉앵커의 프리스트레스 도입 전 수동저항 효과를 확인하기 위한 해석적 연구이다. 영구앵커로 강봉을 사용하는 경우 두부 하중 재하 전에도 비탈면 내 변위 발생 시 강봉, 그라우트, 주변 지반사이 상호작용에 따른 수동저항효과로 변위가 억제된다. 이에 실제 강봉앵커가 적용된 현장을 대상으로 한계평형해석 및 유한요소해석을 이용하여 파괴면의 형상 및 안전율 변화를 검토하였다. 검토결과, 강봉앵커가 보강된 비탈면의 안전율은 유한요소해석결과 2.02이며, 한계평형해석결과 2.14에 비해 약 5.9% 작게 발생하였고 활동면의 위치도 더 깊게 발생하였다. 이는 보강 전 비탈면에 비해 안전율이 한계평형해석은 163%, 유한요소법은 153% 증가된 것이다. 또한, 최대발생 변위는 비탈면 내 하부 무보강구간에서 발생하였으며, 강봉앵커가 설치된 위치에서는 변위가 42~83% 감소되는 것으로 나타났다.

Keywords

References

  1. Griffiths, D.V. and Lane, P.A. (1999), "Slope stability analysis by finite elements", Geotechnique, Vol. 49, No. 3, pp. 387~403. 
  2. Jeong, E.S. (2019), Analysis of slope stability through tensile force loss of installed permanent anchors. Department of Civil Engineering Graduate School, Inje University. 
  3. Joo, Y.S., Kim N.K., Kim, S.K. and Park, J.S. (2008), "Study of the soilnail-slope deign method considering bending resistance of soil nail", Proceedings of the Society of Civil Engineering, Vol. 28 (6C), pp. 331~338. 
  4. Kim, S.K., Kim, N.K., Park, J.S., Joo, Y.S. and Kim, T.H. (2008), "Comparison of safety factor for an anchored slope in accordance with the effects of load transfer", Journal of the Korean Society of Geotechnical Engineering, Vol. 24, No. 1, pp. 55~60. 
  5. Kim, Y.G. (2011), "A study on the behavior and failure mechanism of soil nailing walls using centrifuge model tests", Journal of Korea Academia-Industrial Cooperation Society, Vol. 12 No. 12, pp. 5963~5973. 
  6. Liu, X., Wang, J., Huang, J. and Jiang, H. (2017), "Full-scale pullout tests and analyses of ground anchors in rocks under ultimate load conditions", Engineering Geology, Vol. 228, pp. 1~10, ISSN 0013-7952. 
  7. Matsui, T. and San, K. (1992), "Finite element slope stability analysis by shear strengh reduction technique", Soils and Foundations, Vol. 32, No. 1, pp. 59~70. 
  8. Montero-Cubillo, N.S., Galindo, R.A., Olalla, C. and Muniz-Menendez, M. (2021), "Pull-out creep laboratory test for soft rocks", International Journal of Rock Mechanics and Mining Sciences, Vol. 144. ISSN 1365-1609. 
  9. Naylor, D.J. (1999), "Filling space with tetrahedra", International Journal for Numerical Methods in Engineering, Vol. 44, No. 10, pp. 1383~1395. 
  10. Park, C.S. and Ahn, S.J. (2019), "An analytical study on the sope safety factor considering various conditions", Journal of the Korean Geotechnical Society, Vol. 35, No. 5, pp. 31~41. 
  11. Park, H.I., Park, J., Hwang, D.J. and Lee, S.R. (2005), "Development of slope stability analysis method based on discrete element method and genetic algorithm I. estimation", Journal of the Korean Society of Geotechnical Engineering, Vol. 21, No. 4, pp. 115~122. 
  12. Wang, D., Hu, Y. and Randolph, M.F. (2010), "Three-dimensional large deformation finite element analysis of plate anchors in uniform clay", Journal of Geotechnical and Geoenvironmental Engineering, Vol. 136, No. 2, pp. 355~365. 
  13. Wang, D., Merifield, R.S. and Gaudin C. (2013), "Uplift behaviour of helical anchors in clay", Canadian Geotechnical Journal, Vol. 50, No. 6, pp. 575~584. 
  14. Wang, D., Cui, K., Wu, G., Feng, F. and Yu, X. (2019), "Performance and working mechanism of tension-compression composite anchorage system for earthen heritage sites", Heritage Science, Vol. 7, No. 52. pp. 1~17. 
  15. Xu, H., Wang, F. and Cheng, X. (2007), "Pullout creep properties of grouted soil anchors", Journal of Central South University of Technology, Vol. 14, pp. 474~477. 
  16. Xu, D. and Yin, J. (2016), "Analysis of excavation induced stress distributions of GFRP anchors in a soil slope using distributed fiber optic sensors", Engineering Geology, Vol. 213, pp. 55~63. 
  17. Zhang, G., Cao, J. and Wang, L. (2014), "Failure behavior and mechanism of slopes reinforced using soil nail wall under various loading conditions", Soils and Foundations, Vol. 54, Issue 6, pp. 1175~1187.