DOI QR코드

DOI QR Code

A NOTE ON THE NONLOCAL CONTROLLABILITY OF HILFER FRACTIONAL DIFFERENTIAL EQUATIONS VIA MEASURE OF NONCOMPACTNESS

  • C.S.V. BOSE (Department of Mathematics, Vellore Institute of Technology) ;
  • V. SESUM-CAVIC (Department of Civil Engineering, University of Belgrade) ;
  • R. UDHAYAKUMAR (Department of Mathematics, Vellore Institute of Technology) ;
  • B.A. NISHA (Department of Mathematics, St.Joseph's Institute Of Technology) ;
  • S. AL-OMARI (Department of Mathematics, Faculty of Science, Al-Balqa Applied University) ;
  • M.H. KISHOR (School of Computer Science and Engineering, Vellore Institute of Technology)
  • Received : 2023.09.23
  • Accepted : 2024.01.05
  • Published : 2024.03.30

Abstract

We looked at nonlocal controllability for Hilfer fractional differential equations with almost sectorial operator in this manuscript. We show certain necessary criteria for nonlocal controllability using the measure of noncompactness and the Mönch fixed point theorem. Finally, we provided theoretical and practical applications are given to demonstrate how the abstract results might be applied.

Keywords

References

  1. R.P. Agarwal, V. Lakshmikanthan and J.J. Nieto, On the concept of solution for fractional differential equations with uncertainty, Nonlinear Analysis, TMA 72 (2010), 2859-2862. https://doi.org/10.1016/j.na.2009.11.029
  2. B. Ahmad, A. Alsaedi, S.K. Ntouyas and J. Tariboon, Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities, Springer International Publishing AG, 2017.
  3. K. Balachandran and R. Sakthivel, Controllability of integro-differential systems in Banach spaces, Appl. Math. Comput. 118 (2001), 63-71.
  4. P. Bedi, A. Kumar, T. Abdeljawad, Z.A. khan and A. Khan, Existence and approximate controllability of Hilfer fractional evolution equations with almost sectorial operators, Adv. Differ. Equ. 615 (2020), 1-15.
  5. A. Chandra, S. Chattopadhyay, Design of hardware efficient FIR filter: a review of the state of the art approaches, Engineering Science and Technology 19 (2016), 212-226.
  6. K. Diethelm, The analysis of fractional differential equations, An application-oriented exposition using differential operators of Caputo type, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2010.
  7. C. Dineshkumar, R. Udhayakumar, V. Vijayakumar and K.S. Nisar, Results on approximate controllability of neutral integro-differential stochastic system with state-dependent delay, Numer. Methods Partial Differ. Equ. (2020), 1-15. DOI: 10.1002/num.22698
  8. C. Dineshkumar and R. Udhayakumar, New results concerning to approximate controllability of Hilfer fractional neutral stochastic delay integro-differential system, Numer. Methods Partial Differ. Equ. (2020), 1-19. DOI:10.1002/num.22567.
  9. R. Ganesh, R. Sakthivel, N.I. Mahmudov and S.M. Anthoni, Approximate controllability of fractional integro-differential evolution equations, J. Appl. Math. 2013 (2013), 1-7. https://doi.org/10.1155/2013/291816
  10. H. Gu and J.J. Trujillo, Existence of integral solution for evolution equation with Hilfer fractional derivative, Appl. Math. Comput. 257 (2015), 344-354.
  11. R. Hilfer, Application of fractional calculus in physics, World Scientific, Singapore, 2000.
  12. A. Jaiswal and D. Bahuguna, Hilfer fractional differantial equations with almost sectorial operators, Differ. Equ. Dyn. Syst. (2020), 1-17. DOI: 10.1007/s12591-020-00514-y
  13. S. Ji, G. Li and M. Wang, Controllability of impulsive differential systems with nonlocal conditions, Appl. Math. Comput. 217 (2011), 6981-6989.
  14. K. Kavitha, V. Vijayakumar, R. Udhayakumar, N. Sakthivel and K.S. Nissar, A note on approximate controllability of the Hilfer fractional neutral differential inclusions with infinite delay, Math. Methods Appl. Sci. 44 (2021), 4428-4447. https://doi.org/10.1002/mma.7040
  15. K. Kavitha, V. Vijayakumar and R. Udhayakumar, Results on controllability on Hilfer fractional neutral differential equations with infinite delay via measure of noncompactness, Chaos Solit. Fractals 139 (2020), 1-9.
  16. V. Lakshmikantham and A.S. Vatsala, Basic theory of fractional differential equations, Nonlinear Analysis: Theory, Methods & Applications 69 (2008), 2677-2682. https://doi.org/10.1016/j.na.2007.08.042
  17. K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993.
  18. M. Mohan Raja, V. Vijayakumar, A. Shukla, K.S. Nisar and S. Rezapour, New discussion on nonlocal controllability for fractional evolution systems of order 1 < r < 2, Adv. Differ. Equ. 481 (2021),
  19. N.I. Muhmudov, Exact null controllability of semilinear evolution systems, J. Glob. Optim. 56 (2013), 317-326. https://doi.org/10.1007/s10898-011-9823-x
  20. H. Monch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Analysis: Theory, Methods & Applications 4 (1980), 985-999. https://doi.org/10.1016/0362-546X(80)90010-3
  21. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci., 44, Springer, New York, 1983.
  22. F. Periago and B. Straub, A functional caculus for almost sectorial operators and applications to abstract evolution equations, J. Evol. Equ. 2 (2002), 41-62. https://doi.org/10.1007/s00028-002-8079-9
  23. I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
  24. C. Ravichandran and D. Baleanu, On the controllability of fractional functional integro-differential systems with an infinite delay in Banach spaces, Adv. Differ. Equ. 291 (2013), 1-13. https://doi.org/10.1186/1687-1847-2013-291
  25. R. Sakthivel, R. Ganesh, Y. Ren and S.M. Anthoni, Approximate controllability of nonlinear fractional dynamic systems, Cummun. Nonlinear Sci. Number Simulat. 18 (2013), 3498-3508. https://doi.org/10.1016/j.cnsns.2013.05.015
  26. V. Singh, Controllability of Hilfer fractional differential systems with non-dense domain, Numer. Funct. Anal. Optim. 40 (2019), 1572-1592. https://doi.org/10.1080/01630563.2019.1615947
  27. S. Sivasankar, R. Udhayakumar, Hilfer fractional neutral stochastic Volterra integro-differential inclusions via almost sectorial operators, Mathematics 10 (2022). https://doi.org/10.3390/math10122074
  28. C.S. Varun Bose and R. Udhayakumar, A note on the existence of Hilfer fractional differential inclusions with almost sectorial operators, Math. Methods Appl. Sci. (2021), 1-12. DOI: 10.1002/mma.7938
  29. C.S. Varun Bose and R. Udhayakumar, Analysis on the Controllability of Hilfer fractional neutral differential equations with almost sectorial operators and infinite delay via measure of noncompactness, Qual. Theory Dyn. Syst. 22 (2023). https://doi.org/10.1007/s12346-022-00719-2
  30. C.S. Varun Bose, R. Udhayakumar, M. Savatovic, A. Deiveegan, V. Todorcevic, and S. Radenovic, Existence of mild solution of the Hilfer fractional differential equations with infinite delay on an infinite interval, Fractal Fract. 7 (2023). https://doi.org/10.3390/fractalfract7100724
  31. V. Vijayakumar, C. Ravichandran, K.S. Nisar and K.D. Kucche, New discussion on approximate controllability results for fractional Sobolev type Volterra-Fredholm integro-differential systems of order 1 < r < 2, Numer. Methods Partial Differ. Equ. (2021), 1-19. DOI: 10.1002/num.22772
  32. Jr. Wang, Z. Fin and Y. Zhou, Nonlocal controllability of semilinear dynamic systems with fractional derivative in Banach spaces, J. Optim. Theory Appl. 154 (2012), 292-302. https://doi.org/10.1007/s10957-012-9999-3
  33. Jr. Wang and Y. Zhou, Complete controllability of fractional evolution systems, Commun. Nonlinear Sci. Number. Simulat. 17 (2012), 4346-4355. https://doi.org/10.1016/j.cnsns.2012.02.029
  34. R.N. Wang, De-Han Chen and T.J. Xiao, Abstract fractional Cauchy problems with almost sectorial operators, J. Differ. Equ. 252 (2012), 202-235. https://doi.org/10.1016/j.jde.2011.08.048
  35. M. Yang and Q. Wang, Existence of mild solutions for a class of Hilfer fractional evolution equations with nonlocal conditions, Fract. Calc. Appl. Anal. 20 (2017), 679-705. https://doi.org/10.1515/fca-2017-0036
  36. S. Zahoor, S. Naseem, Design and implementation of an efficient FIR digital filter, Cogent Engineering 4 (2017), 1323373.
  37. Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014.
  38. M. Zhou, C. Li and Y. Zhou, Existence of mild solutions for Hilfer fractional evolution equations with almost sectorial operators, Axioms 11 (2022), 1-13. DOI:10.3390/axioms11040144