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STUDY ON LINE GRAPH OF SOME GRAPH

OPERATORS OF CHEMICAL STRUCTURES VIA F

AND M1 INDICES
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Abstract. The Topological indices are known as Mathematical charac-
terization of molecules. In this paper, we have studied line graph of sub-

division and semi-total point graph of triangular benzenoid, polynomino

chains of 8-cycles and graphene sheet through forgotten and first Zagreb
indices.
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1. Introduction

A topological index is a numerical parameter which characterizes its molec-
ular topology and used for quantitative structure activity relationship (QSAR)
and quatitative structure property relationship (QSPR). In 1947, the first topo-
logical index (named as Wiener index or path index) was introduced by Wiener
for finding the boiling point of paraffins [5]. For new topological indices, we
suggest the reader to refer the papers [7, 9–20].

In [1] , B. Furtula and et al., proposed a topological index based on the degrees
of vertices of graph, which is known as forgotten index and it is defined as

F [G] =
∑

u∈V [G]

deg3Gu

or
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F (G) =
∑

uv∈E(G)

[deg2G(u) + deg2G(v)]

The first Zagreb index is introduced by Gutman et al. [2] and it is defined as

M1(G) =
∑

uv∈E(G)

[degG(u) + degG(v)]

or

M1(G) =
∑

u∈V (G)

deg2G(u)

Definition 1.1. [6] The line graph L(G) is the graph obtained by associating
a vertex with each edge of the graph G and two vertices are adjacent with an
edge iff the corresponding edges of G are adjacent.

Definition 1.2. [21] The subdivision graph S(G) is the graph obtained by
replacing each of its edge by a path of length 2 or equivalently, by inserting an
additional vertex into each edge of G.

Definition 1.3. The semi-total point graph R(G) graph is obtained from G
by adding a new vertex corresponding to every edge of G and by joining each
new vertex to the end vertices of the edge corresponding to it.

Triangular benzenoid: Benzenoid molecular graph is a connected geomet-
ric figure obtained by arranging congruent regular hexagons in a plane so that
two hexagons are either disjoint or have a common edge and it is shown in below
Figure 1 [3, 18,22].

Figure 1. Triangular benzenoid
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Polynomino chains of 8-cycles: A k-polyomino system is a finite 2-connected
plane graph such that each interior face (also called cell) is surrounded by a
regular 4k-cycle of length one and Polynomino chains of 8-cycles shown in below
Figure 2.

Figure 2. Polynomino chains of 8-cycles

Graphene sheet: Graphene sheets are essentially the finest materials in the
world. Graphene sheet is a one-atom-thick planar sheet of carbon iotas which are
intensively packed in a hexagonal lattice structure. Graphene sheets show high
electrical conductance at room temperatures and molecular graph of graphene
sheet as shown in below Figure 3 (See [4, 8]).

Figure 3. Graphene sheet

2. Main results

In this section, we compute the forgotten and first Zagreb indices of line graph
of subdivision and semi-total point graph of triangular benzenoid, polynomino
chains of 8-cycles and graphene sheet.
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Theorem 2.1. Let Γ be the line graph of subdivision graph of triangular ben-
zenoid, then

M1[Γ] =
9

2
(n2 − n+ 8)2 +

27

4
(n2 + 7n− 8)2,

F [Γ] =
27

4
(n2 − n+ 8)3 +

81

8
(n2 + 7n− 8)3.

Proof. Let Γ be a line graph of subdivision graph of triangular benzenoid. Ap-
plying the line and subdivision operations to Figure 1, we obtain the two types
of vertices based on their degrees and which are shown in the below Table 1.

Table 1. Degree partition of Γ based on their degrees.

degΓ(u) Number of vertices

2 12 + 3n(n−1)
2

3 3
2
(n2 + 7n− 8)

Consider,

M1[G] = Σu∈V [G]deg
2
Gu

M1[Γ] = 2

(
12 +

3n(n− 1)

2

)2

+ 3

(
3

2
(n2 + 7n− 8)

)2

=
1

2
(24 + (3n(n− 1)))2 +

33

22
(n2 + 7n− 8)2

M1[Γ] =
9

2
(n2 − n+ 8)2 +

27

4
(n2 + 7n− 8)2.

the above proof method is also follows for F [Γ]. □

Theorem 2.2. Let Υ be the line graph of semi-total point graph of triangular
benzenoid, then

M1[Υ] = 9(n2 − n+ 8)2 +
27

2
(n2 + 7n− 4)2 + 18n2(n− 1)2 + 360(n− 1)2,

F [Υ] =
27

2
(n2 − n+ 8)3 +

81

4
(n2 + 7n− 8)3 + 27(n(n− 1))3 + 2160(n− 1)3.

Proof. Let Υ be a line graph of semi-total point graph of triangular benzenoid.
Applying the line and semi-total point operations to Figure 1, we obtain the
four types of vertices based on their degrees and which are shown in the below
Table 2.

Table 2. Degree partition of Υ based on their degrees.

degΥ(u) Number of vertices

4 12 + 3n(n−1)
2

6 3
2
(n2 + 7n− 8) + 6

8 3n(n−1)
2

10 6(n− 1)
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Consider,

M1[G] = Σu∈V [G]deg
2
Gu

M1[Υ] = 4

(
12 +

3n(n− 1)

2

)2

+ 6

(
3

2
(n2 + 7n− 8) + 6

)2

+ 8

(
3n(n− 1)

2

)2

+ 10(6(n− 1))2

M1[Υ] = 9(n2 − n+ 8)2 +
27

2
(n2 + 7n− 4)2 + 18n2(n− 1)2 + 360(n− 1)2.

the above proof method is also follows for F [Υ]. □

Theorem 2.3. Let Φ be the line graph of subdivision graph of polynomino chains
of 8-cycles, then

M1[Φ] = 3776n2 − 160n+ 236,

F [Φ] = 107008n3 − 3618n2 + 20064n+ 376.

Proof. Let Φ be a line graph of subdivision graph of polynomino chains of 8-
cycles. Applying the line and subdivision operations to Figure 2, we obtain the
two types of vertices based on their degrees and which are shown in the below
Table 3.

Table 3. Degree partition of Φ based on their degrees.

degΦ(u) Number of vertices

2 32n+ 8

3 24n− 6

Consider,

M1[G] = Σu∈V [G]deg
2
Gu

M1[Φ] = 2(32n+ 8)2 + 3(24n− 6)2

M1[Φ] = 3776n2 − 160n+ 236.

the above proof method is also follows for F [Φ]. □

Theorem 2.4. Let Ψ be the line graph of semi-total point graph of polynomino
chains of 8-cycles, then

M1[Ψ] = 13024n2 − 320n+ 178,

F [Ψ] = 420224n3 − 49920n2 + 18672n− 62.

Proof. Let Ψ be a line graph of semi-total point graph of polynomino chains
of 8-cycles. Applying the line and semi-total point operations to Figure 2, we
obtain the four types of vertices based on their degrees and which are shown in
the below Table 4.
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Table 4. Degree partition of Ψ based on their degrees.

degΨ(u) Number of vertices

4 32n+ 4

6 36n− 2

8 8n

10 8n− 3

Consider,

M1[G] = Σu∈V [G]deg
2
Gu

M1[Ψ] = 4(32n+ 4)2 + 6(36n− 2)2 + 8(8n)2 + 10(8n− 3)2

M1[Ψ] = 13024n2 − 320n+ 178.

the above proof method is also follows for F [Ψ]. □

Theorem 2.5. Let ג be the line graph of subdivision graph of graphene sheet
with n-rows and m-columns, then

M1[ג] = 32(m+ n+ 1)2 + 12(|E(ג(m,n))| − 2m− 2n− 2)2,

F [ג] = 128(m+ n+ 1)3 + 24(|E(ג(m,n))| − 2m− 2n− 2)3.

Proof. Let ג be a line graph of subdivision graph of graphene sheet with n-rows
and m-columns. Applying the line and subdivision operations to Figure 3, we
obtain the two types of vertices based on their degrees and which are shown in
the below Table 5.

Table 5. Degree partition of ג based on their degrees.

degג(u) Number of vertices

2 4m+ 4n+ 4

3 2|E(ג(m,n))| − 4m− 4n− 4

Consider,

M1[G] = Σu∈V [G]deg
2
Gu

M1[ג] = 2(4m+ 4n+ 4)2 + 3(2|E(ג(m,n))| − 4m− 4n− 4)2

M1[ג] = 32(m+ n+ 1)2 + 12(|E(ג(m,n))| − 2m− 2n− 2)2.

the above proof method is also follows for F .[ג] □

Theorem 2.6. Let ℸ be the line graph of semi-total point graph of polynomino
chains of 8-cycles, then

M1[ℸ] = 64(m+ n+ 1)2 + 6(2|E(ℸ(m,n))| − 4m− 3n)2

+ 32(2m+ n− 2)2 + 10(|E(ℸ(m,n))| − 4m− 3n)2,

F [ℸ] = 256(m+ n+ 1)3 + 6(2|E(ℸ(m,n))| − 4m− 3n)3
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+ 64(2m+ n− 2)3 + 10(|E(ℸ(m,n))| − 4m− 3n)3.

Proof. Let ℸ be a line graph of semi-total point graph of graphene sheet with
n-rows and m-columns. Applying the line and semi-total point operations to
Figure 3, we obtain the four types of vertices based on their degrees and which
are shown in the below Table 6.

Table 6. Degree partition of ℸ based on their degrees.

degℸ(u) Number of vertices

4 4m+ 4n+ 4

6 2|E(ℸ(m,n))| − 4m− 3n

8 4m+ 2n− 4

10 |E(ℸ(m,n))| − 4m− 3n

Consider,

M1[G] = Σu∈V [G]deg
2
Gu

M1[ℸ] = 4(4m+ 4n+ 4)2 + 6(2|E(ℸ(m,n))| − 4m− 3n)2

+ 8(4m+ 2n− 4)2 + 10(|E(ℸ(m,n))| − 4m− 3n)2

M1[ℸ] = 64(m+ n+ 1)2 + 6(2|E(ℸ(m,n))| − 4m− 3n)2

+ 32(2m+ n− 2)2 + 10(|E(ℸ(m,n))| − 4m− 3n)2.

the above proof method is also follows for F [ℸ]. □

3. Conclusion

In this article, we have calculated the forgotten and first Zagreb indices of
line graph of subdivision and semi-total point graph of triangular benzenoid,
polynomino chains and graphene sheet. These results are useful to study the
QSPR and QSAR of above chemical molecules.
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