DOI QR코드

DOI QR Code

Three-dimensional finite element analysis on the effects of maxillary protraction with an individual titanium plate at multiple directions and locations

  • Fan Wang (Department of Orthodontics, School of Stomatology, Capital Medical University) ;
  • Qiao Chang (Department of Orthodontics, School of Stomatology, Capital Medical University) ;
  • Shuran Liang (Department of Orthodontics, School of Stomatology, Capital Medical University) ;
  • Yuxing Bai (Department of Orthodontics, School of Stomatology, Capital Medical University)
  • Received : 2023.10.23
  • Accepted : 2024.02.01
  • Published : 2024.03.25

Abstract

Objective: A three-dimensional-printed individual titanium plate was applied for maxillary protraction to eliminate side effects and obtain the maximum skeletal effect. This study aimed to explore the stress distribution characteristics of sutures during maxillary protraction using individual titanium plates in various directions and locations. Methods: A protraction force of 500 g per side was applied at forward and downward angles between 0° and 60° with respect to the Frankfort horizontal plane, after which the titanium plate was moved 2 and 4 mm upward and downward, respectively. Changes in sutures with multiple protraction directions and various miniplate heights were quantified to analyze their impact on the maxillofacial bone. Results: Protraction angle of 0-30° with respect to the Frankfort horizontal plane exhibited a tendency for counterclockwise rotation in the maxilla. At a 40° protraction angle, translational motion was observed in the maxilla, whereas protraction angles of 50-60° tended to induce clockwise rotation in the maxilla. Enhanced protraction efficiency at the lower edge of the pyriform aperture was associated with increased height of individual titanium plates. Conclusions: Various protraction directions are suitable for patients with different types of vertical bone surfaces. Furthermore, when the titanium plate was positioned lower, the protraction force exhibited an increase.

Keywords

Acknowledgement

This study was supported by Innovation Research Team Project of Beijing Stomatological Hospital, Capital Medical University (CXTD20223), Beijing Hospitals Authority Clinical Medicine Development of Special Funding Support (ZLRK202330).

References

  1. Dietrich UC. Morphological variability of skeletal Class 3 relationships as revealed by cephalometric analysis. Rep Congr Eur Orthod Soc 1970;46:131-43. https://pubmed.ncbi.nlm.nih.gov/5287485/
  2. Sar C, Arman-Ozcirpici A, Uckan S, Yazici AC. Comparative evaluation of maxillary protraction with or without skeletal anchorage. Am J Orthod Dentofacial Orthop 2011;139:636-49. https://doi.org/10.1016/j.ajodo.2009.06.039
  3. Cevidanes L, Baccetti T, Franchi L, McNamara JA Jr, De Clerck H. Comparison of two protocols for maxillary protraction: bone anchors versus face mask with rapid maxillary expansion. Angle Orthod 2010;80:799-806. https://doi.org/10.2319/111709-651.1
  4. Zhou YH, Ding P, Lin Y, Qiu L. [Preliminary study on miniplate implant anchorage for maxillary protraction]. Chin J Orthod 2007;14:102-5. Chinese. https://caod.oriprobe.com/articles/52754/Preliminary_study_on_miniplate_implant_anchorage_f.htm
  5. Liang S, Xie X, Wang F, Chang Q, Wang H, Bai Y. Maxillary protraction using customized miniplates for anchorage in an adolescent girl with skeletal Class III malocclusion. Korean J Orthod 2020;50:346-55. https://doi.org/10.4041/kjod.2020.50.5.346
  6. Liang SR, Wang F, Zhou DQ, Chang S, Bai YX. [Three-dimensional printed miniplate used for maxillary protraction]. Zhonghua Kou Qiang Yi Xue Za Zhi 2017;52:753-5. Chinese. https://pubmed.ncbi.nlm.nih.gov/29275570/
  7. Yu HS, Baik HS, Sung SJ, Kim KD, Cho YS. Three-dimensional finite-element analysis of maxillary protraction with and without rapid palatal expansion. Eur J Orthod 2007;29:118-25. https://doi.org/10.1093/ejo/cjl057
  8. Lee NK, Baek SH. Stress and displacement between maxillary protraction with miniplates placed at the infrazygomatic crest and the lateral nasal wall: a 3-dimensional finite element analysis. Am J Orthod Dentofacial Orthop 2012;141:345-51. https://doi.org/10.1016/j.ajodo.2011.07.021
  9. Tanne K, Hiraga J, Sakuda M. Effects of directions of maxillary protraction forces on biomechanical changes in craniofacial complex. Eur J Orthod 1989;11:382-91. https://doi.org/10.1093/oxfordjournals.ejo.a036010
  10. Kim KY, Bayome M, Park JH, Kim KB, Mo SS, Kook YA. Displacement and stress distribution of the maxillofacial complex during maxillary protraction with buccal versus palatal plates: finite element analysis. Eur J Orthod 2015;37:275-83. https://doi.org/10.1093/ejo/cju039
  11. Kircelli BH, Pektas ZO. Midfacial protraction with skeletally anchored face mask therapy: a novel approach and preliminary results. Am J Orthod Dentofacial Orthop 2008;133:440-9. https://doi.org/10.1016/j.ajodo.2007.06.011
  12. Gautam P, Valiathan A, Adhikari R. Maxillary protraction with and without maxillary expansion: a finite element analysis of sutural stresses. Am J Orthod Dentofacial Orthop 2009;136:361-6. https://doi.org/10.1016/j.ajodo.2008.02.021
  13. Lin QI, Jing-Hua T, Zhen-Jin Z, Yang Z. Study of stress distribution of craniofacial sutures following maxillary protraction with palatal expansiona three-dimensional FEM study. Chin J Med Phys 2013;30:3933-5. http://zgyxwlxzz.paperopen.com/en/oa/DArticle.aspx?type=view&id=201301024 1024
  14. Qu Y, Liu J, Yang S, Huang Y. 3-D finite element study on maxillary body protraction using implant anchorage. J Pract Stomatol 2016;32:58-62. https://caod.oriprobe.com/articles/48123795/3_D_finite_element_study_on_maxillary_body_protrac.htm
  15. Yan X, He W, Lin T, Liu J, Bai X, Yan G, et al. Three-dimensional finite element analysis of the craniomaxillary complex during maxillary protraction with bone anchorage vs conventional dental anchorage. Am J Orthod Dentofacial Orthop 2013;143:197-205. https://doi.org/10.1016/j.ajodo.2012.09.019
  16. Zhang GH, Cai Z, Lu Q. Three-dimensional finite element method study on the maxillary protraction: the direction of the protraction. J Med Biomech 2000;15:208-11. http://www.mechanobiology.cn/yyswlxen/article/abstract/200004004?st=article_issue
  17. Miyasaka J, Tanne K, Tsutsumi S, Sakuda M. [Finite element analysis of the biomechanical effects of orthopedic forces on the craniofacial skeleton. Construction of a 3-dimensional finite element model of the craniofacial skeleton]. Osaka Daigaku Shigaku Zasshi 1986;31:393-402. Japanese. https://pubmed.ncbi.nlm.nih.gov/3469386/
  18. Zou M, Lin WJ. [A three-dimensional finite element study on the influence of different protraction force on cranio-maxillary complex]. Shanghai Kou Qiang Yi Xue 2011;20:88-92. Chinese. https://pubmed.ncbi.nlm.nih.gov/21451906/
  19. Kambara T. Dentofacial changes produced by extra-oral forward force in the Macaca irus. Am J Orthod 1977;71:249-77. https://doi.org/10.1016/0002-9416(77)90187-7