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VECTORIAL LINEAR CONNECTIONS WITH PARALLEL

TORSION

Hwajeong Kim

Abstract. In this article, we consider a connection of vectorial type in

some sense which is not a metric connection. We will then discuss when
this connection ∇̃∗ has parallel torsion T , that is, ∇̃∗T = 0.

1. Introduction

On a Riemannian manifold M equipped a metric tensor g, we consider a
connection ∇ satisfying some basic linearity which actually enables the paral-
lel transport between tangent spaces. In particular, a connection which pre-
serves the metric tensor g, that is, ∇g = 0 is called a metric connection. The
Levi-Civita connection, denoted by ∇g, is then the well known unique metric
connection without torsion.

Recently, in developing general theories, a metric connection whose torsion
is not necessarily zero is considered. Actually, a connection with total skew-
symmetric torsion has become a tool in recent years for holonomy theory in
mathematics and superstring theory in physics, as in the papers by physicists
such as Strominger, Luest, Theisen from the 1980’s, and Alexandro and Schnee.

We can require a further condition that the torsion T be parallel with respect
to the connection ∇, that is, ∇T = 0. Indeed, there are many examples of
parallel torsions which have interesting geometric structures, so these parallel
torsions are considered natural generalizations of the Levi-Civita connection.
([1, 3, 10, 12]).

A metric connection ∇V of vectorial type, which is determined by a fixed
vector field V , can be expressed as follows:

∇V
XY = ∇g

XY + g(X,Y )V − g(V, Y )X.

It is known that the condition ∇V = 0 guarantees that this vectorial metric
connection has parallel torsion. Furthermore, the converse holds in the case of
the so-called canonical connection.
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In this article, we will consider another type of vectorial connection, that
is, the dual connection of the Weyl connection ∇̃∗, defined by

∇̃∗
XY = ∇g

XY + g(X,S)Y − g(Y, S)X + g(X,Y )S

for a fixed vector field S.
This connection ∇̃∗ is not a metric connection and has non-zero torsion. It

turns out that the parallel condition ∇̃∗S = 0 does not give a parallel torsion,
differently from the case of the vectorial metric connection.

In the main Theorem 3.1, we will then find an equivalent condition of the
vector field S whose associated connection ∇̃∗ has parallel torsion.

2. Preliminaries

Given a Riemannian manifold (M, g), let Γ(M) denote the set of sections
of the tangent bundle TM . Then a linear connection ∇ can be considered as
a map

∇ : Γ(M)⊗ Γ(M) → Γ(M).

The torsion T of a connection ∇ is then a (2, 1)-tensor field defined by

T (X,Y ) = ∇XY −∇Y X − [X,Y ],

where [X,Y ] is the Lie-bracket.

A connection ∇ satisfying ∇g = 0 is called a metric connection which gives
isometries between tangent spaces by parallel transport, that is,

(1) V (g(X,Y )) = g(∇V X,Y ) + g(X,∇V Y ),

for any tangent vector fields V,X, Y ∈ Γ(M). Here we recall that for (2, 0)-
tensor field g, we have:

(∇V g)(X,Y ) = V (g(X,Y ))− g(∇V X,Y )− g(X,∇V Y ).

The Levi-Civita connection, denoted by ∇g, is the unique metric connection
with T = 0.

The difference of a linear connection ∇ with the Levi-Civita connection ∇g

is a (2, 1)-tensor field denoted by A, that is,

∇XY = ∇g
XY +A(X,Y ).

Then some geometric properties of the connection ∇ are induced from the
symmetric or antisymmetric properties of A.

Using the difference tensor A(X,Y ), the types of the torsion tensors of
metric connections are classified algebraically. For details, we refer to [6, 12].

We now consider the dual connection ∇∗ of ∇. This notion of dual connec-
tions is introduced by Norden, Nagaoka, and Amari ([2, 9, 11]).
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Definition 2.1 (dual connections). For a linear connection ∇, the dual
connection ∇∗ of ∇ with respect to g is defined by the identity for any vector
fields X,Y, Z:

Z⟨X,Y ⟩g = ⟨∇ZX,Y ⟩g + ⟨X,∇∗
ZY ⟩g.

Using the expression of the difference between a linear connection ∇ and
the Levi-Civita connection ∇g, we have

∇XY = ∇g
XY +A(X,Y ),

where A is a (2, 1)-tensor field. And the notation A will also be used for the
(3, 0)-tensor defined by

A(X,Y, Z) = ⟨A(X,Y ), Z⟩.

Furthermore, let

∇XY = ∇g +A(X,Y ),(2)

∇∗
XY = ∇g +A∗(X,Y ).(3)

We can then easily check that a linear connection has a unique dual con-
nection as follows.

Remark 2.2. For a linear connection ∇ and its dual connection ∇∗ as
above (2), (3), it holds

(4) A(Z,X, Y ) +A∗(Z, Y,X) = 0.

3. Vectorial connections

Given a metric connection ∇ = ∇g + A, it is easily checked from (1) that
∇ is a metric connection if and only if the (3, 0)-tensor field A is in Am, where

(5) Am = TM ⊗ Λ2TM = {A ∈ ⊗3TM |A(X,Y, Z) = −A(X,Z, Y )}.

Furthermore, it is known that the space Am splits into the sum of three
irreducible components under the action of O(n), that is,

(6) Am = TM ⊕ Λ3(TM)⊕A′,

for some subspace A′ as the third irreducible representation([6, 12]).

In particular, the type corresponding to the first component of (6) is ex-
pressed by

(7) A(X,Y ) = g(X,Y )V − g(V, Y )X,

where V is a fixed vector field on M . It is known that for ∇V = 0, the torsion
of the connection ∇ is parallel, that is, ∇T = 0.

We now consider another type of vectorial connection, the so-called Weyl
connection. This Weyl connection ∇w is the unique connection which preserves
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a given conformal structure, known to be constructed using a fixed vector field
S, that is,

∇w
XY = ∇g

XY − g(X,S)Y − g(Y, S)X + g(X,Y )S.

For details, we refer to [7].

From (4), the dual connection of Weyl connection, denoted by ∇̃∗, is then
expressed by

(8) ∇̃∗ = ∇g +A

with the (3, 0)-tensor field A, as follows:

(9) A(X,Y, Z) = g(X,S)g(Y,Z)− g(Y, S)g(X,Z) + g(X,Y )g(S,Z).

We will now discuss when the connection ∇̃∗ has parallel torsion.

Theorem 3.1. The connection ∇̃∗ as above (8), the dual connection of the
Weyl connection, has parallel torsion if and only if the vector field S satisfies

(10) g(∇g
WS,X) = 6g(W,S)g(X,S) + g(S, S)g(W,X)

for all W,X, Y, Z ∈ Γ(M).

Proof. The torsion of ∇̃∗, denoted by T , is then

T (X,Y, Z) = A(X,Y, Z)−A(Y,X,Z)

= g(X, 2S)g(Y, Z) + g(Y,−2S)g(X,Z).(11)

For X,Y, Z, U ∈ Γ(M), it holds

W [g(X,U)g(Y,Z)]

= W [g(X,U)]g(Y,Z) + g(X,U)W [g(Y,Z)]

= {g(∇g
WX,U) + g(X,∇g

WU)}g(Y,Z)

+g(X,U){g(∇g
WY, Z) + g(Y,∇g

WZ)}
= {g(∇̃∗

WX,U)−A(W,X,U) + g(X, ∇̃∗
WU)−A(W,U,X)}g(Y,Z)

+g(X,U){g(∇̃∗
WY,Z)−A(W,Y,Z) + g(Y, ∇̃∗

WZ)−A(W,Z, Y )}.

So, we obtain

W [T (X,Y, Z)]

= W [g(X, 2S)g(Y,Z)− g(Y, 2S)g(X,Z)]

= {g(∇̃∗
WX, 2S)−A(W,X, 2S) + g(X, ∇̃∗

W 2S)−A(W,V,X)}g(Y,Z)

+g(X, 2S){g(∇̃∗
WY, Z)−A(W,Y,Z) + g(Y, ∇̃∗

WZ)−A(W,Z, Y )}
−{g(∇̃∗

WY, 2S)−A(W,Y, 2S) + g(Y, ∇̃∗
W 2S)−A(W, 2S, Y )}g(X,Z)

−g(Y, 2S){g(∇̃∗
WX,Z)−A(W,X,Z) + g(X, ∇̃∗

WZ)−A(W,Z,X)}.
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Now from (11) we have

T (∇̃∗
WX,Y, Z) + T (X, ∇̃∗

WY, Z) + T (X,Y, ∇̃∗
WZ)

= g(∇̃∗
WX, 2S)g(Y,Z)− g(Y, 2S)g(∇̃∗

WX,Z)

+g(X, 2S)g(∇̃∗
WY,Z)− g(∇̃∗

WY, 2S)g(X,Z)

+g(X, 2S)g(Y, ∇̃∗
WZ)− g(Y, 2S)g(X, ∇̃∗

WZ).

The condition ∇̃∗T = 0 means

W (T (X,Y, Z)) = T (∇̃∗
WX,Y, Z) + T (X, ∇̃∗

WY,Z) + T (X,Y, ∇̃∗
WZ).

So, comparing the above equations we obtain

{g(X, ∇̃∗
W 2S)−A(W,X, 2S)−A(W, 2S,X)}g(Y,Z)

−{A(W,Y,Z) +A(W,Z, Y )}g(X, 2S)

= {g(Y, ∇̃∗
W 2S)−A(W,Y, 2S)−A(W, 2S, Y )}g(X,Z)

−{A(W,X,Z) +A(W,Z,X)}g(Y, 2S).

By (9), the condition ∇̃∗T = 0 is equivalent to that the following holds:

{g(X, ∇̃∗
WS)− 8g(W,S)g(X,S)}g(Y, Z)

= {g(Y, ∇̃∗
WS)− 8g(W,S)g(Y, S)}g(X,Z),(12)

for all W,X, Y, Z ∈ Γ(M).

If we choose Z = Y of length 1 which is perpendicular to X, (12) simplifies
in the form:

(13) g(X, ∇̃∗
WS) = 8g(W,S)g(X,S), for all W,X ∈ Γ(M).

We note here that the property (13) also implies (12).

Finally, since g(∇̃∗
XY, Z) = g(∇g

XY, Z) +A(X,Y, Z) with

A(X,Y, Z) = g(X,S)g(Y,Z)− g(Y, S)g(X,Z) + g(X,Y )g(S,Z),

the equation (13) gives

g(∇g
WS,X) = 6g(W,S)g(X,S) + g(S, S)g(W,X).

Remark 3.2. (i) The connection ∇̃∗ is non-metric because the difference

tensor A = ∇̃∗ −∇g is not in Am which is defined by (5).
(ii) In local coordinates system for an orthonormal basis {ei}, (10) implies

differential equations for S:

g(∇g
eiS, ej) = 6g(ei, S)g(ej , S) + g(S, S)g(ei, ej).

(iii) Contrary to the case of metric connection of vectorial type, ∇̃∗-parallel

S does not give parallel torsion for the ∇̃∗. This is because, by (12), for

parallel torsion of ∇̃∗ it must hold that for all X,Y, Z

g(W,S)g(X,S)g(Y,Z) = 8g(W,S)g(Y, S)g(X,Z),
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but this cannot be satisfied for W = Y = S, X ⊥ S and X = Z.
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