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HOMOTHETIC MOTIONS WITH GENERALIZED

TRICOMPLEX NUMBERS

Sıddıka Özkaldı Karakuş, Ferdağ Kahraman Aksoyak∗, and
Gülşah Özaydın

Abstract. In this paper, we define the generalized tricomplex numbers

and give some algebraic properties of them. By using the matrix repre-

sentation of generalized tricomplex numbers, we determine a motion on
the hypersurface M in eight dimensional generalized linear space R8

αβγ

and show that this is a homothetic motion. Also, for some special cases
of the real numbers α, β and γ, we give some examples of homothetic mo-

tions in R8 and R8
4 and obtain some rotational matrices in these spaces,

too.

1. Introduction

Corrado Segre was discovered multicomplex numbers in 1892 [14]. Let C0

be a real numbers and for every n > 0 let in be a imaginary number, that is,
i2n = −1. The multicomplex numbers denoted by Cn+1 is given by:

Cn+1 = {z = x+ in+1y : x, y ∈ Cn} .

In multicomplex numbers systems, different imaginer units are commutative,
that is, inim = imin. For n = 0, C1 is the set of complex number, for n = 1, C2

is the set of bicomplex number, for n = 2, C3 is the set of tricomplex number
and if it continues like this Cn is the set of multicomplex numbers order n.

Various studies have been done on bicomplex numbers and tricomplex num-
bers, which are a special case of multicomplex numbers. Price introduced the
function theory of multicomplex numbers and gave some details about bicom-
plex numbers [13].

Also, the generalized bicomplex numbers and some algebraic properties of
them were introduced in [10].

Number systems have a wide application area in motion geometry. Espe-
cially the relationship between number systems and homothetic motion was
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first discussed by Yaylı in [15]. He proved that the motion described by ma-
trix representations in terms of 4 × 4 of quaternions is a homothetic motion
in R4 and then Yaylı and Bükcü defined homothetic motion in R8 with Cay-
ley numbers (Octonions) [16]. Also, Jafari and Yaylı investigated homothetic
motion with generalized quaternions [4]. Based on this idea, by means of bi-
complex numbers the homothetic motions on a special hypersurfaces in R4 and
R4

2 were defined in [5] and [2], respectively. And then Özkaldı Karakuş etc.
by using generalized bicomplex numbers determined homothetic motions on
some hypersurfaces in R4

αβ [8] and this study is a generalization of the studies

numbered by [5] and [2], too. In [1] Babadağ and others discribed a motion by
using the matrix representation of tricomplex numbers and they showed that
it is a homothetic motion in R8.

In this paper, we introduce the generalized tricomplex numbers and obtain
their some algebraic properties. By means of the matrix representation of
generalized tricomplex numbers, we determine a motion on the hypersurface
M in eight dimensional generalized linear space R8

αβγ and show that it is a
homothetic motion. Also, for some special cases of the real numbers α, β and
γ, we obtain some examples of homothetic motions in R8 and R8

4.

2. Basic Concepts

In this section, some basic concepts which we need in the paper will be
given.

2.1. Generalized Bicomplex Numbers

Generalized bicomplex numbers was introduced by Özkaldı Karakuş and
Kahraman Aksoyak [10].

Any generalized bicomplex number x is as:

x = x1 + x2i+ x3j + x4ij,

such that xt ∈ R, for 1 ≤ t ≤ 4 and imaginer units i and j hold i2 = −α,
j2 = −β, ij = ji for α, β ∈ R. The set of generalized bicomplex numbers is
showen by Cαβ .

For x, y ∈ Cαβ the addition, multiplication, and scalar multiplication are
given, respectively

x+ y = (x1 + y1) + (x2 + y2) i+ (x3 + y3) j + (x4 + y4) ij,

x · y = (x1y1 − αx2y2 − βx3y3 + αβx4y4) + (x1y2 + x2y1 − βx3y4 − βx4y3) i

+(x1y3 + x3y1 − αx2y4 − αx4y2) j + (x1y4 + x4y1 + x2y3 + x3y2) ij,(1)

cx = cx1 + cx2i+ cx3j + cx4ij, c ∈ R.
Hence, Cαβ is 4-dimensional vector space on R with respect to the addition and
scalar multiplication are defined above and the base of Cαβ is {1, i, j, ij} . Also
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it has a commutative real algebra with generalized bicomplex number product
given by (1).

Any generalized bicomplex number can be rewritten as x = (x1 + x2i) +
(x3 + x4i) j. There are three different kinds of conjugations for generalized
bicomplex numbers. They are given as follows:

xt1 = (x1 − x2i) + (x3 − x4i) j,

xt2 = (x1 + x2i)− (x3 + x4i) j,

xt3 = (x1 − x2i)− (x3 − x4i) j,

where xt1 , xt2 and xt3 are the conjugations of x according to i, j and both i
and j, respectively. If we product x and its conjugation, we calculate following
equalities.

x · xt1 =
(
x2
1 + αx2

2 − βx2
3 − αβx2

4

)
+ 2 (x1x3 + αx2x4) j,

x · xt2 =
(
x2
1 − αx2

2 + βx2
3 − αβx2

4

)
+ 2 (x1x2 + βx3x4) i,

x · xt3 =
(
x2
1 + αx2

2 + βx2
3 + αβx2

4

)
+ 2 (x1x4 − x2x3) ij.

If we take as α = 1 and β = 1, we get bicomplex numbers.

2.2. Generalized Tricomplex Numbers

Now, the generalized tricomplex numbers was introduced by [9].
The set defined as:

TCαβ = {z = x+ ky : x, y ∈ Cαβ , k2 = −γ, γ ∈ R},
is called generalized tricomplex numbers set. If we take

x = z1 + z2i+ z3j + z4ij and y = z5 + z6i+ z7j + z8ij,

any generalized tricomplex number z is defined as follows:

z = (z1 + z2i+ z3j + z4ij) + k (z5 + z6i+ z7j + z8ij) ,

= z1 + z2i+ z3j + z4ij + z5k + z6ik + z7jk + z8ijk.

Specially here, if we take as α = β = γ = 1, tricomplex numbers are obtained
[1].

Let x1, y1, x2, y2 be generalized bicomplex numbers and k2 = −γ, k ∈ R.
Addition of any two generalized tricomplex numbers z = x1 + ky1 and w =
x2 + ky2 is as follows:

z + w = x1 + x2 + k (y1 + y2) .

The generalized tricomplex numbers set is closed according to the addition.
That is, the sum of the two generalized tricomplex numbers is again a gener-
alized tricomplex number. (TCαβ ,+) is an Abel group and identity element is
(0, 0, 0, 0, 0, 0, 0, 0).

The scalar multiplication of z in TCαβ by a real number λ is defined as:

λz = λx+ kλy ∈ TCαβ .
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The set of TCαβ specifies 8−dimensional vector space on R object based on ad-
dition and scalar multiplication. Also a base of TCαβ is {1, i, j, ij, k, ik, jk, ijk}.

The product of any two generalized tricomplex numbers z = x1 + ky1 and
w = x2 + ky2 is following:

zw = (x1 + ky1) (x2 + ky2) ,(2)

= (x1x2 − γy1y2) + k (x1y2 + x2y1) .

The Hamilton operator is isomorphic by multiplication in generalized tri-
complex numbers as shown in the generalized bicomplex numbers. To show
this we define a linear transformation as:

T : TCαβ → TCαβ

z → T (z) = Tz : TCαβ → TCαβ

w → Tz(w) = zw.

Using this linear transformation, the matrix representation Tz of generalized
tricomplex number z = z1 + z2i+ z3j + z4ij + z5k+ z6ik+ z7jk+ z8ijk based
on the basis {1, i, j, ij, k, ik, jk, ijk} on the real number set is obtained as:

(3) Tz =



z1 −αz2 −βz3 αβz4 −γz5 αγz6 βγz7 −αβγz8
z2 z1 −βz4 −βz3 −γz6 −γz5 βγz8 βγz7
z3 −αz4 z1 −αz2 −γz7 αγz8 −γz5 αγz6
z4 z3 z2 z1 −γz8 −γz7 −γz6 −γz5
z5 −αz6 −βz7 αβz8 z1 −αz2 −βz3 αβz4
z6 z5 −βz8 −βz7 z2 z1 −βz4 −βz3
z7 −αz8 z5 −αz6 z3 −αz4 z1 −αz2
z8 z7 z6 z5 z4 z3 z2 z1


.

By using (3), we can express the generalized tricomplex numbers product as
follows:

zw =



z1 −αz2 −βz3 αβz4 −γz5 αγz6 βγz7 −αβγz8
z2 z1 −βz4 −βz3 −γz6 −γz5 βγz8 βγz7
z3 −αz4 z1 −αz2 −γz7 αγz8 −γz5 αγz6
z4 z3 z2 z1 −γz8 −γz7 −γz6 −γz5
z5 −αz6 −βz7 αβz8 z1 −αz2 −βz3 αβz4
z6 z5 −βz8 −βz7 z2 z1 −βz4 −βz3
z7 −αz8 z5 −αz6 z3 −αz4 z1 −αz2
z8 z7 z6 z5 z4 z3 z2 z1





w1

w2

w3

w4

w5

w6

w7

w8


.

If generalized tricomplex number z is written as z = x1 + ky1 depending on
base {1, k}, in that case the matrix notation of z is of type 2× 2 as:

Tz =

(
x1 −γy1
y1 x1

)
.



Homothetic motions with generalized tricomplex numbers 105

The generalized tricomplex number product which is given by (2) can be ex-
pressed by following matrix product, too, that is,

zw =

(
x1 −γy1
y1 x1

)(
x2

y2

)
.

Let x = z1 + z2i + z3j + z4ij and y = z5 + z6i + z7j + z8ij be generalized
bicomplex numbers. The conjugation of generalized tricomplex number z =
x+ ky is defined by

zt = (x+ ky)
t3 ,

= xt3 − kyt3 ,

= [(z1 − z2i)− (z3 − z4i) j]− [(z5 − z6i)− (z7 − z8i) j] k,

= z1 − z2i− z3j + z4ij − z5k + z6ik + z7jk − z8ijk,

where xt3 and yt3 are the conjugations of x and y according to both i and j
in generalized bicomplex numbers, respectively. So that, we can calculate the
product of z and the conjugation of z as:

zzt = z21 + αz22 + βz23 + αβz24 + γz25 + αγz26 + βγz27 + αβγz28

+2ij (z1z4 − z2z3 + γz5z8 − γz6z7)

+2ik (z1z6 + βz3z8 − z2z5 − βz4z7)

+2jk (z1z7 + αz2z8 − z3z5 − αz4z6) .

In particular, if α = β = γ = 1, we obtain the following equation which is given
by Babadağ in 2009 [1].

zzt = z21 + z22 + z23 + z24 + z25 + z26 + z27 + z28

+2ij (z1z4 − z2z3 + z5z8 − z6z7)

+2ik (z1z6 + z3z8 − z2z5 − z4z7)

+2jk (z1z7 + z2z8 − z3z5 − z4z6) .

So, we can say that the algebraic properties of generalized tricomplex number
include the algebraic properties of tricomplex number.

3. Homothetic Motions via Generalized Tricomplex Numbers

Now, we determine the homothetic motion on a hypersurface M at R8
αβγ

with the help of generalized tricomplex numbers.
Let z = (z1, z2, z3, z4, z5, z6, z7, z8) ∈ R8

αβγ , for

M1 =

{
z = (z1, z2, z3, z4, z5, z6, z7, z8) ∈ R8

αβγ :

z1z7 + αz2z8 − z3z5 − αz4z6 = 0, z ̸= 0

}
⊂ R8

αβγ ,

M2 =

{
z = (z1, z2, z3, z4, z5, z6, z7, z8) ∈ R8

αβγ :

z1z4 + γz5z8 − z2z3 − γz6z7 = 0, z ̸= 0

}
⊂ R8

αβγ ,
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M3 =

{
z = (z1, z2, z3, z4, z5, z6, z7, z8) ∈ R8

αβγ :

z1z6 + βz3z8 − z2z5 − βz4z7 = 0, z ̸= 0

}
⊂ R8

αβγ .

M = M1 ∩M2 ∩M3 be a hypersurface in R8
αβγ . Then the norm of generalized

tricomplex number z on the hypersurface M is defined by

∥z∥ =
√
|g(z, z)|,

=
√
|zzt|,

=
√
|z21 + αz22 + βz23 + αβz24 + γz25 + αγz26 + βγz27 + αβγz28 |.

In that case, a unit sphere in R8
αβγ is given by

S7
αβγ =

{
(z1, z2, z3, z4, z5, z6, z7, z8) ∈ R8

αβγ :

z21 + αz22 + βz23 + αβz24 + γz25 + αγz26 + βγz27 + αβγz28 = 1

}
.

Let us consider the following curve

η : I ⊂ R → M ⊂ R8
αβγ ,

s → η(s) = (η1(s), η2(s), η3(s), η4(s), η5(s), η6(s), η7(s), η8(s)) ,

for every s ∈ I. We suppose that the curve η(s) is smooth regular curve of
order r. By using (3), the matrix representation of the curve η ∈ R8

αβγ is given
by

(4) B =



η1 −αη2 −βη3 αβη4 −γη5 αγη6 βγη7 −αβγη8
η2 η1 −βη4 −βη3 −γη6 −γη5 βγη8 βγη7
η3 −αη4 η1 −αη2 −γη7 αγη8 −γη5 αγη6
η4 η3 η2 η1 −γη8 −γη7 −γη6 −γη5
η5 −αη6 −βη7 αβη8 η1 −αη2 −βη3 αβη4
η6 η5 −βη8 −βη7 η2 η1 −βη4 −βη3
η7 −αη8 η5 −αη6 η3 −αη4 η1 −αη2
η8 η7 η6 η5 η4 η3 η2 η1


.

Now we will describe the one parameter motion on hypersurface M at R8
αβγ

by means of the matrix representation of the curve η given by (4).

Definition 3.1. Let B be the matrix representation of the curve η(s) on
M and C be the 8×1 real matrix depends on a real parameter s at R8

αβγ . Then
the one-parameter motion on M is defined by[

Y
1

]
=

[
B C
0 1

] [
X
1

]
,

or it can be expressed as

(5) Y = BX + C.

By differentiating of (5) with respect to s, we get following equality

Ẏ = ḂX + Ċ +BẊ,
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where Ẏ , ḂX + Ċ and BẊ are the absolute velocity, the sliding velocity and
the relative velocity of the point X, respectively. When the sliding velocity is
equal to zero for all s, we find the pole points of the motion. That is, we find
the pole points of the motion by the solition of the equation (6)

(6) ḂX + Ċ = 0.

See for more details [3].

Theorem 3.2. The equation (5) is a homothetic motion on M.

Proof. Let the curve η be on M. In that case it does not pass through the
origin. So the matrix given by (4) can be expressed as:

(7)

B = h



η1

h
−αη2

h
−βη3

h
αβη4

h
−γη5

h
αγη6

h
βγη7

h
−αβγη8

h
η2

h
η1

h
−βη4

h
−βη3

h
−γη6

h
−γη5

h
βγη8

h
βγη7

h
η3

h
−αη4

h
η1

h
−αη2

h
−γη7

h
αγη8

h
−γη5

h
αγη6

h
η4

h
η3

h
η2

h
η1

h
−γη8

h
−γη7

h
−γη6

h
−γη5

h
η5

h
−αη6

h
−βη7

h
αβη8

h
η1

h
−αη2

h
−βη3

h
αβη4

h
η6

h
η5

h
−βη8

h
−βη7

h
η2

h
η1

h
−βη4

h
−βη3

h
η7

h
−αη8

h
η5

h
−αη6

h
η3

h
−αη4

h
η1

h
−αη2

h
η8

h
η7

h
η6

h
η5

h
η4

h
η3

h
η2

h
η1

h


= hA,

where

h : I ⊂ R → R

s → h(s) = ∥η(s)∥ =
√

η21 + αη22 + βη23 + αβη24 + γη25 + αγη26 + βγη27 + αβγη28 ̸= 0.

Since η(s) ∈ M , it satisfies

η1η7 + αη2η8 − η3η5 − αη4η6 = 0,

η1η4 + γη5η8 − η2η3 − γη6η7 = 0,

η1η6 + βη3η8 − η2η5 − βη4η7 = 0.

By using these equalities, we see that the matrix A in (7) is a semi-orthogonal
matrix. Thus it holds

AT εA = ε and detA = 1,

in here ε is the signature matrix associated with the metric g and it is as:

ε =



1 0 0 0 0 0 0 0
0 α 0 0 0 0 0 0
0 0 β 0 0 0 0 0
0 0 0 αβ 0 0 0 0
0 0 0 0 γ 0 0 0
0 0 0 0 0 αγ 0 0
0 0 0 0 0 0 βγ 0
0 0 0 0 0 0 0 αβγ


.
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Hence A is a semi-orthogonal matrix, h is the homothetic scale and C is the
translation matrix. Thus the equation (5) becomes a homothetic motion.

Remark 3.3. In this paper, we suppose that he norm of the curve η ∈ R8
αβγ

is positive, that is, η21 + αη22 + βη23 + αβη24 + γη25 + αγη26 + βγη27 + αβγη28 > 0.

Corollary 3.4. Let η(s) be a curve on S7
αβγ ∩ M . In that case one-

parameter motion on M defined by (5) is a general motion forms of a rotation
and a translation.

Proof. Let η(s) be a curve lying on both S7
αβγ and M . So we have

η21 + αη22 + βη23 + αβη24 + γη25 + αγη26 + βγη27 + αβγη28 = 1.

Then the matrix B given by (4) determines a semi orthogonal matrix. So the
motion defined by (5) becomes a general motion.

Theorem 3.5. Let η(s) be a unit speed curve and η̇(s) be on M , then
·
B

is a semi-orthogonal matrix in R8
αβγ .

Proof. Since η is a unit speed curve

η̇21 + αη̇22 + βη̇23 + αβη̇24 + γη̇25 + αγη̇26 + βγη̇27 + αβγη̇28 = 1,

and η̇(s) ∈ M , it occurs

η̇1η̇7 + αη̇2η̇8 − η̇3η̇5 − αη̇4η̇6 = 0,

η̇1η̇4 + γη̇5η̇8 − η̇2η̇3 − γη̇6η̇7 = 0,

η̇1η̇6 + βη̇3η̇8 − η̇2η̇5 − βη̇4η̇7 = 0.

Then the matrix
·
B holds ḂT εḂ = ε and det Ḃ = 1. So it becomes a semi

orthogonal matrix in R8
αβγ .

Theorem 3.6. If the curve η is a unit velocity curve and η̇(s) ∈ M , then

the motion defined by the matrix Ḃ is a regular motion, and it does not depend
on h.

Proof. From Theorem (3.5), we know that
·
B is a semi-orthogonal matrix in

R8
αβγ . So the motion determined by the matrix Ḃ becomes a regular motion.

Since det Ḃ = 1, it does not depend on h.

Theorem 3.7. Let the curve η be a unit speed curve on M whose the
tangent vector η̇(s) are on M. Then the pole point of the motion defined by

(5) is X = −Ḃ−1C.

Proof. If the curve η is on M, from Theorem (3.2), we know that the equa-
tion (5) is a homothetic motion. Also, since the curve η is a unit speed curve

and its tangent vector belongs to M, from Theorem (3.5) det Ḃ = 1 and it

means that there is inverse of the matrix Ḃ and only one solution of the equa-
tion (6). Then the pole point of the motion is found as X = −Ḃ−1C.
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4. Examples of Homothetic Motions on Hypersurface M at R8
αβγ

In this paper, we support the theory in the paper with some examples.

4.1. Case I α = β = γ = 1

If we take as α = β = γ = 1, the hypersurface M becomes at eight dimen-
sional Euclidean space R8 and it is given by

M =

{
z = (z1, z2, z3, z4, z5, z6, z7, z8) ∈ R8 : z1z7 + z2z8 − z3z5 − z4z6 = 0,
z1z4 + z5z8 − z2z3 − z6z7 = 0, z1z6 + z3z8 − z2z5 − z4z7 = 0, z ̸= 0.

}
.

Example 4.1. Let η : I ⊂ R → M ⊂ R8 be a curve given by

(8) η (s) =
1√
2
h(s)


cos θ (s) cos δ (s) + i cos θ (s) sin δ (s)

+j cos θ (s) cos δ (s) + ij cos θ (s) sin δ (s)
+k sin θ (s) cos δ (s) + ik sin θ (s) sin δ (s)
+jk sin θ (s) cos δ (s) + ijk sin θ (s) sin δ (s)

 ,

where θ, δ : I ⊂ R → R are differentiable functions. By using (4) and (8)
the matrix B is a homothetic matrix in here h is a homothetic scale. Also,
if h(s) = 1 in (8), then the curve η is on unit sphere S7 and the matrix B
becomes a rotation matrix in R8. Now let find some special examples by using
the example given by (8).

If we get as θ (s) = as and δ (s) = bs, a, b are real numbers

η (s) =
1√
2
h(s)

(
cos (as) cos (bs) , cos (as) sin (bs) , cos (as) cos (bs) , cos (as) sin (bs) ,
sin (as) cos (bs) , sin (as) sin (bs) , sin (as) cos (bs) , sin (as) sin (bs)

)
.

If we have as θ (s) = π
4 and δ (s) = s, we obtain the following curve

η (s) =
1

2
h(s) (cos s, sin s, cos s, sin s, cos s, sin s, cos s, sin s) .

If we get as θ (s) = s and δ (s) = π
4 ,

η (s) =
1

2
h(s) (cos s, cos s, cos s, cos s, sin s, sin s, sin s, sin s) .

If we take as θ (s) = 0 and δ (s) = s,

η (s) =
1√
2
h(s) (cos s, sin s, cos s, sin s, 0, 0, 0, 0) .

If we take as θ (s) = s and δ (s) = 0,

η (s) =
1√
2
h(s) (cos s, 0, cos s, 0, sin s, 0, sin s, 0) .

Example 4.2. Let η : I ⊂ R → M ⊂ R8 be a curve given by

(9) η (s) = h(s) (cos s+ i sin s) .
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By using (4) and (9), the matrix B becomes the matrix of the homothetic
motion. If we take as h(s) = 1, then we get

(10) η (s) = cos s+ i sin s.

By using (4) and (10), we obtain the matrix as :

B =



cos s − sin s 0 0 0 0 0 0
sin s cos s 0 0 0 0 0 0
0 0 cos s − sin s 0 0 0 0
0 0 sin s cos s 0 0 0 0
0 0 0 0 cos s − sin s 0 0
0 0 0 0 sin s cos s 0 0
0 0 0 0 0 0 cos s − sin s
0 0 0 0 0 0 sin s cos s


.

This matrix is a rotational matrix in R8 which leaves the planes Ox1x2, Ox3x4,
Ox5x6, Ox7x8 invariant. Since the curve given by (10) is unit speed and its
tangent vector is on M, the derivative of the above matrix is orthogonal matrix,
too.

4.2. Case II α = β = 1, γ = −1

For α = β = 1 and γ = −1, M is a hypersurface in eight dimensional
pseudo-Euclidean space with index 4 R8

4 and it is given by

M =

{
z = (z1, z2, z3, z4, z5, z6, z7, z8) ∈ R8

4 : z1z7 + z2z8 − z3z5 − z4z6 = 0,
z1z4 − z5z8 − z2z3 + z6z7 = 0, z1z6 + z3z8 − z2z5 − z4z7 = 0, z ̸= 0,

}
.

Example 4.3. Let η be a curve on M at R8
4.

(11) η (s) =
1√
2
h(s)


cosh θ (s) cos δ (s) + i cosh θ (s) sin δ (s)

+j cosh θ (s) cos δ (s) + ij cosh θ (s) sin δ (s)
+k sinh θ (s) cos δ (s) + ik sinh θ (s) sin δ (s)
+jk sinh θ (s) cos δ (s) + ijk sinh θ (s) sin δ (s)

 ,

where θ, δ : I ⊂ R → R are smooth functions. By using (4) and (11), the
matrix B determines a homothetic motion, in here h is a homothetic scale.
If h(s) = 1, then the curve η is on unit sphere S7

4 at R8
4 and B becomes a

rotational matrix in R8
4. Now let investigate some special examples by using

the example given by (11).

If we get as θ (s) = as and δ (s) = bs, a, b are real numbers,

η (s) =
1√
2
h(s)

(
cosh (as) cos (bs) , cosh (as) sin (bs) , cosh (as) cos (bs) , cosh (as) sin (bs) ,
sinh (as) cos (bs) , sinh (as) sin (bs) , sinh (as) cos (bs) , sinh (as) sin (bs)

)
.

If θ (s) = s and δ (s) = π
4 ,

η (s) =
1

2
h(s) (cosh s, cosh s, cosh s, cosh s, sinh s, sinh s, sinh s, sinh s) .
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If θ (s) = 0 and δ (s) = s,

η (s) =
1√
2
h(s) (cos s, sin s, cos s, sin s, 0, 0, 0, 0) .

If θ (s) = s and δ (s) = 0,

η (s) =
1√
2
h(s) (cosh s, 0, cosh s, 0, sinh s, 0, sinh s, 0) .

Example 4.4. Let η be a curve on M as:

(12) η (s) = h(s) (cosh s+ ij sinh s) .

The matrix representation of (12) describes a homothetic motion. If we get as
h(s) = 1, we have the following curve

(13) η (s) = cosh s+ ij sinh s,

the matrix B associated with the curve given by (13) is a real semi-orhogonal
matrix, that is, it becomes a rotational matrix as:

B =



cosh s 0 0 0 0 0 0 sinh s
0 cosh s 0 0 0 0 − sinh s 0
0 0 cosh s 0 0 − sinh s 0 0
0 0 0 cosh s sinh s 0 0 0
0 0 0 sinh s cosh s 0 0 0
0 0 − sinh s 0 0 cosh s 0 0
0 − sinh s 0 0 0 0 cosh s 0

sinh s 0 0 0 0 0 0 cosh s


.

The above matrix is a rotational matrix in R8
4 which leaves the planes Ox1x8,

Ox2x7, Ox3x6, Ox4x5 invariant. Also, since the curve given by (13) is unit

speed and its tangent vector is on M, the derivative of the above matrix Ḃ is
a real semi-orthogonal matrix, too.

4.3. Case III α = −1, β = γ = 1

If we choose as α = −1, β = γ = 1, M is a hypersurface in eight dimensional
pseudo Euclidean space with index 4 R8

4 and it is given by

M =

{
z = (z1, z2, z3, z4, z5, z6, z7, z8) ∈ R8

αβγ : z1z7 − z2z8 − z3z5 + z4z6 = 0,

z1z4 + z5z8 − z2z3 − z6z7 = 0, z1z6 + z3z8 − z2z5 − z4z7 = 0, z ̸= 0

}
.

Example 4.5. Let η be a curve on M at R8
4.

(14) η (s) =
1√
2
h(s)


cosh θ (s) cosh δ (s) + i cosh θ (s) sinh δ (s)

+j cosh θ (s) cosh δ (s) + ij cosh θ (s) sinh δ (s)
−k sinh θ (s) sinh δ (s)− ik sinh θ (s) cosh δ (s)
+jk sinh θ (s) sinh δ (s) + ijk sinh θ (s) cosh δ (s)

 ,

where θ, δ : I ⊂ R → R are smooth functions. By using (4) and (14), the
matrix B associated with the curve η is a homothetic motion matrix and h is
a homothetic scale. If h(s) = 1, then the curve η is on unit sphere S7

4 at R8
4
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and the matrix B determines a rotational matrix in R8
4. Now let research some

special examples by using the example given by (14).
If we get as θ (s) = as and δ (s) = bs, a, b are real numbers,

η (s) =
1√
2
h(s)

(
cosh (as) cosh (bs) , cosh (as) sinh (bs) , cosh (as) cosh (bs) , cosh (as) sinh (bs) ,

− sinh (as) sinh (bs) ,− sinh (as) cosh (bs) , sinh (as) sinh (bs) , sinh (as) cosh (bs)

)
.

If θ (s) = s and δ (s) = 0,

η (s) =
1√
2
h(s) (cosh s, 0, cosh s, 0, 0− sinh s, 0, sinh s) .

If θ (s) = 0 and δ (s) = s,

η (s) =
1√
2
h(s) (cosh s, sinh s, cosh s, sinh s, 0, 0, 0, 0) .

5. Conclusion

In this paper, using the generalized tricomplex numbers, we determine a
motion on the hypersurface M in eight dimensional generalized linear space
R8

αβγ and prove that this is a homothetic motion. For some special cases of
the real numbers α, β and γ, we support the theory in this paper with some
examples of homothetic motions in R8 and R8

4. Also, we give some algebraic
properties of the generalized tricomplex numbers.
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Bilecik, Turkey.
E-mail: gulsahd4@yahoo.com




