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SYMMETRY OF SPECIAL COMPOSITION OPERATORS ON

THE HARDY SPACE

Young-Bok Chung

Abstract. We consider a special orthonormal basis for the Hardy space
of the unit disc to compute the matrix representations of the composition

operators with respect to the basis particulary associated to two symbols

which are the inverse and the origin symmetry of the Riemann self map
in the unit disc, and then we find a certain symmetry of the matrices.

1. Introduction

Given a set S and a function φ : S → S, the composition operator Cφ on a
Banach space H on S with symbol φ is defined by

Cφ(f) = f ◦ φ for f ∈ H.

One of important research areas related to composition operators is how the
properties of the operator relate to those of the symbol. On the other hand,
when the Banach space H is a Hilbert space, the composition operator is heav-
ily dependent on the matrix representation of the operator with respect to the
orthonormal bases for the function space. However, except for very simple
cases, computation of the matrix of a composition operator in an infinite di-
mensional Hilbert space turned out to be very complicated and difficult, so it
has rarely been formulated so far.

Suppose now that the base set is the unit disc U in the complex plane and
the function space is the Hardy space H2(bU). In this category the composition
operator Cφ with a holomorphic self map φ on U becomes a bounded operator
on H2(bU). In particular, when φ is a Riemann map which maps the unit disc
into itself, it characterizes the automorphisms up to rotations, and the asso-
ciated composition operator becomes complex symmetric and vice versa with
certain conditions. See [2], [7] for these references. So, from this point of view,
it seems very important to formulate the matrices of the composition operators
with the symbols of the Riemann map or more general its automorphisms.

In this paper, we consider a special orthonormal basis for the Hardy space
which is a generalization of monomials zn, n = 1, 2, to compute the matrices
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of the composition operators with respect to the basis with the two associated
symbols which are the inverse and the origin symmetry of the Riemann self
map in the unit disc.

2. Some preliminaries

From now on, we denote U by the unit disc in the complex plane and we fix
a point a in U , unless otherwise specified. Let L2(bU) be the space of square
integrable functions on the boundary bU of the unit disc U with the usual inner
product < u, v >=

∫
bU

uv ds, where ds is the differential element of arc length

on bU . And let H2(bU) be the classical Hardy space which is the space of
holomorphic functions on U with L2-boundary values in bU .

For a holomorphic self map φ of U , the composition operator Cφ with the
symbol φ is defined by

Cφ(v) = v ◦ φ for v ∈ H2(bU).

It is well known that Cφ is a bounded linear operator on the Hardy space
H2(bU). See [6] for details. For the case φ = fa of the Riemann map

fa(z) =
a− z

1− az
,

the associated composition operator Cfa gives an important classification, such
as being the only symbol that makes Cfa a complex symmetric operator under
suitable conditions. See [2] for this matter. On the other hand, the author
formulated in [5] the matrix of the operator Cfa explicitly.

In this paper, we more extendibly consider two symbols f−a and −fa which
are the inverse fa and the symmetry −fa about the origin of the Riemann map,
and find useful formulae of the matrices of the corresponding operators.

Let a ∈ U be fixed. For a positive integer m, we define the function vm by

vm(z) :=

√
1− |a|2√
2π

(z − a)m−1

(1− az)m
=

√
1− |a|2√
2π

fm−1
a (z)

1

1− az

which is holomorphic in a neighborhood of U . It is well known that the class of
vm,m = 1, 2, 3, · · · forms an orthonormal basis for the Hardy space h2(bU).
See [1] for general cases. The author also proved that the set {vm |m =
0,±1,±2, · · · } forms an orthonormal basis for L2(bU). See [3] and [4] for more
details.

Observe that since the basis is orthonormal, for positive integers l and m,
the (l,m)-th entry of the matrix [Cφ] of the operator Cφ with symbol φ with
respect to the basis {vm |m = 1, 2, · · · } is obtained by [Cφ]lm =< Cφ(vm), vl >.
For reference in the next section, we lists several properties whose proofs are
all trivial.
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Suppose that z is on the boundary of the unit disc. Then the following
identities hold. (

1− az

z − a

)
=

z − a

1− az
.(1) (

1

1− az

)
=

z

z − a
.(2)

z ds = −i dz.(3)

3. Necessary lemmas

In this section, we compute higher-order derivatives of functions dealt with
in the next section.

Lemma 3.1. For integers m and k with m ≥ 1 and k ≥ 0,(
zm−1

)(k)
(a) =

[
χ{0}(k) + χ[1,m)(k) · (m− 1)(m− 2) · · · (m− k)

]
am−k−1,

where the function χ
X

associated to the set X is the characteristic function
defined χ

X
(z) = 1 for z ∈ X and χ

X
(z) = 0 for z /∈ X.

Proof. The proof is trivial.

Lemma 3.2. For a positive integer l, define

g
l
(z) = (1− az)l, z ∈ U.

Then for a nonnegative integer k,

g(k)
l

(a) = (−1)k
l!

(l − k)!
ak(1− |a|2)l−k.

Proof. For k = 0, it is obvious. Since g(1)
l

(z) = l(1 − az)l−1(−a) and

g(2)
l

(z) = l(l−1)(1−az)l−2(−a)2, it is easy to see from mathematical induction
on the order of derivative that

g(k)
l

(z) = l(l − 1) · · · (l − k + 1)(1− az)l−k(−a)k,

which proves Lemma 3.2.

Lemma 3.3. For integers l and k with 0 ≤ k ≤ l − 1,[
(1 + az)(1− az)l−1

](k)∣∣∣
z=a

(4)

=
(−1)l−1l!

(l − k)!
alal−k +

(l − 1)!
[
χ

[1,∞)
(k) · (−1)k−1k + (−1)k(l − k)

]
(l − k)!

ak

+

l−1−k∑
j=1

(l − 1)!(l − 2j)

j!(l − k − j)!
al−jal−k−j .
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Proof. We use the Leibniz product rule of differentiation and Lemma 3.2.[
(1 + az)(1− az)l−1

](k)∣∣∣
z=a

=

k∑
j=0

(
k

j

)
(1 + az)(k−j)

[
(1− az)l−1

](j)∣∣∣
z=a

=

(
k

0

)
(1 + az)(k)

∣∣∣
z=a

(1− |a|2)l−1

+

(
k

1

)
(1 + az)(k−1)

[
(1− az)l−1

](1)∣∣∣
z=a

+ · · ·

+

(
k

k − 1

)
(1 + az)(1)

[
(1− az)l−1

](k−1)
∣∣∣
z=a

+

(
k

k

)
(1 + az)(0)

[
(1− az)l−1

](k)∣∣∣
z=a

= ka
[
(1− az)l−1

](k−1)
∣∣∣
z=a

+ (1 + |a|2)
[
(1− az)l−1

](k)∣∣∣
z=a

= ka(−1)k−1 (l − 1)!

(l − k)!
ak−1(1− |a|2)l−k · χ

[1,∞)
(k)

+ (1 + |a|2)(−1)k
(l − 1)!

(l − 1− k)!
ak(1− |a|2)l−1−k.

Using the binomial formula, the above identity is equal to

ka(−1)k−1 (l − 1)!

(l − k)!
ak−1χ

[1,∞)
(k)

l−k∑
j=0

(
l − k

j

)
(−1)l−k−jal−k−jal−k−j

+ (1 + aa)(−1)k
(l − 1)!

(l − 1− k)!
ak

l−k−1∑
p=0

(
l − k − 1

p

)
(−1)l−1−k−pal−1−k−pal−1−k−p

= (l − 1)!χ
[1,∞)

(k)

l−k∑
j=0

(−1)l−1−jk

j!(l − k − j)!
al−jal−k−j

+ (l − 1)!

l−k−1∑
p=0

(−1)l−1−p

p!(l − 1− k − p)!
al−1−pal−1−k−p

+ (l − 1)!

l−k−1∑
q=0

(−1)l−1−q

q!(l − 1− k − q)!
al−qal−k−q.

We extract the first and the last terms from the first summation, the first
terms from the second and third summations and then simplify them to get
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the above identity equal to

(l − 1)!χ
[1,∞)

(k)
(−1)l−1k

0!(l − k)!
alal−k + χ

[1,∞)
(k)

(l − 1)!(−1)k−1k

(l − k)!0!
aka0

+ (l − 1)!χ
[1,∞)

(k)

l−k−1∑
j=1

(−1)l−1−jk

j!(l − k − j)!
al−jal−k−j

+
(l − 1)!(−1)k

(l − k − 1)!0!
aka0 + (l − 1)!

l−k−2∑
p=0

(−1)l−1−p

p!(l − 1− k − p)!
al−1−pal−1−k−p

+ (l − 1)!
(−1)l−1

0!(l − 1− k)!
alal−k + (l − 1)!

l−k−1∑
q=1

(−1)l−1−q

q!(l − 1− k − q)!
al−qal−k−q

= (l − 1)!

[
(−1)l−1kχ

[1,∞)
(k)

(l − k)!
+

(−1)l−1

(l − 1− k)!

]
alal−k

+ (l − 1)!

[
(−1)k−1kχ

[1,∞)
(k)

(l − k)!
+

(−1)k

(l − 1− k)!

]
ak

+ (l − 1)!

l−1−k∑
j=1[

(−1)l−1−jkχ
[1,∞)

(k)

j!(l − k − j)!
+

(−1)l−j

(j − 1)!(l − k − j)!
+

(−1)l−1−j

j!(l − 1− k − j)!

]
al−jal−k−j .

Observing that

(−1)l−1kχ
[1,∞)

(k) + (−1)l−1(l − k) = (−1)l−1(kχ
[1,∞)

(k) + l − k) = (−1)l−1l

and

(−1)l−1−jkχ
[1,∞)

(k) + (−1)l−jj + (−1)l−1−j(l − k − j)

= (−1)l−1−j
[
χ

[1,∞)
(k)k + (−1)j + l − k − j

]
= l − 2j,

the above identity equals the formula (4) in Lemma 3.3 and hence we are
done.

4. Computation of the matrix of the composition operator with
the symbol of inverse of the Riemann map

In this section, we consider the function

f−a(z) =
z + a

1 + az

which is in fact the inverse of the Riemann mapping function fa, and compute
the matrix of the composition operator Cf−a

with the symbol f−a. For two
positive integers l and m, the orthonormality of the functions vm,m = 1, 2, · · ·
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yields the computation of the matrix as follows. It then follows from the equa-
tions (1) and (2) that

[Cf−a ]lm =< vm ◦ f−a, vl >

=
1− |a|2

2π

∫
bU

[
(fm−1

a ◦ f−a)(z)
]( 1

1− az
◦ f−a(z)

)
fa(z)l−1

(
1

1− az

)
dsz

=
1− |a|2

2π

∫
bU

zm−1 1 + az

1− |a|2

(
1− az

z − a

)l−1
z

z − a
dsz

=
1

2πi

∫
bU

zm−1(1 + az)(1− az)l−1

(z − a)l
dz.

Applying the Cauchy’s residue theorem, we obtain the following formula.

Theorem 4.1. Let U be the unit disc and let a be fixed in U . Then for given
two positive integers l,m, the matrix [Cf−a

] of the composition operator Cf−a

on the Hardy space H2(bU) with respect to the orthonormal basis {vm|m =
1, 2, · · · } has (l,m)-th entry

[Cf−a ]lm =
1

(l − 1)!

dl−1

dzl−1

[
zm−1(1 + az)(1− az)l−1

]∣∣∣∣
z=a

.(5)

Now we can use Lemma 3.1, Lemma 3.3 and the Leibniz product rule to
get the formula of the matrix without differentiation as follows. The identity
(5) equals

=
1

(l − 1)!

l−1∑
j=0

(
l − 1

j

)
(zm−1)(j)

[
(1 + az)(1− az)l−1

](l−1−j)
∣∣∣
z=a

=
1

(l − 1)!

l−1∑
j=0

(
l − 1

j

)
·

{[
χ{0}(j) + χ

[1,m)
(j)(m− 1)(m− 2) · · · (m− j)

]
am−1−j

}
·
{
(−1)l−1l!

(j + 1)!
alaj+1

+
(l − 1)!

[
χ

[1,∞)
(l − 1− j)(−1)l−2−j(l − 1− j) + (−1)l−1−j(j + 1)

]
(j + 1)!

al−1−j

+

j∑
p=1

(l − 1)!(l − 2p)

p!(j + 1− p)!
al−paj+1−p

}
.

Thus we obtain the following simplified form of the matrix of the composition
operator Cf−a .

Theorem 4.2. Let U be the unit disc and let a be in U . Then for given two
positive integers l,m, the matrix [Cf−a

] of the composition operator Cf−a
on the

Hardy space H2(bU) with respect to the orthonormal basis {vm|m = 1, 2, · · · }
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has (l,m)-th entry

[Cf−a
]lm

=

l−1∑
j=0

(
l − 1

j

)
(−1)l−1l

(j + 1)!

[
χ{0}(j) + χ

[1,m)
(j)(m− 1)(m− 2) · · · (m− j)

]
alam

+

l−1∑
j=0

(
l − 1

j

)
1

(j + 1)!

[
χ{0}(j) + χ

[1,m)
(j)(m− 1)(m− 2) · · · (m− j)

]
·

[
χ

[1,∞)
(l − 1− j)(−1)l−2−j(l − 1− j) + (−1)l−1−j(j + 1)

]
al−1−jam−1−j .

5. Symmetry of the matrix of a composition operator

In this final section we compute the entry [Cφ]lm where the symbol φ = −fa
is the symmetry −fa about the origin of the Riemann map. In particular,
it turns out that the matrix [C−fa ] has a certain symmetry which is very
interesting. As in the previously section, we get the following (l,m)-th entry
of the matrix [C−fa ].

[Cφ]lm =< vm ◦ φ, vl >

=
1− |a|2

2π

∫
bU

[
(fm−1

a ◦ φ)(z)
]( 1

1− az
◦ φ

)
fa(z)l−1

(
1

1− az

)
dsz.(6)

Observe that

fa ◦ φ =

a− z

1− az
− a

1− a

(
a− z

1− az

) = −z.

It thus follows from (1) and (2) that the identity (6) is equal to

1− |a|2

2π

∫
bU

(−1)m−1zm−1 · 1− az

1− |a|2

(
1− az

z − a

)l−1
z

z − a
dsz.

And then by (3), the above identity equals

(−1)m−1

2πi

∫
bU

zm−1(1− az)l

(z − a)l
dz.

By using the residue theorem we have proved the following proposition.

Theorem 5.1. The matrix [C−fa ] of the composition operator C−fa on the
Hardy space H2(bU) with respect to the orthonormal basis {vm|m = 1, 2, · · · }
has the (l,m)-th entry

[C−fa ]lm =
(−1)m−1

(l − 1)!

dl−1

dzl−1

[
zm−1(1− az)l

]∣∣∣∣
z=a

.(7)
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Notice that as using Lemma 3.1 and Lemma 3.2 the identity (7) is written
as

(−1)m−1

(l − 1)!

l−1∑
j=0

(
l − 1

j

)
(zm−1)(j)g

(l−1−j)
l

∣∣∣
z=a

=
1

(l − 1)!

l−1∑
j=0

(−1)m+l−2−j l!

(j + 1)!

(
l − 1

j

)
·

[
χ{0}(j) + χ

[1,m)
(j)(m− 1)(m− 2) · · · (m− j)

]
am−1−jal−1−j(1− |a|2)j+1.

We have thus obtained another form of the entries of the matrix without dif-
ferentiation.

Theorem 5.2. Let U be the unit disc and let a be in U . Then for given
two positive integers l,m, the matrix [C−fa ] of the composition operator C−fa

on the Hardy space H2(bU) with respect to the orthonormal basis {vm|m =
1, 2, · · · } has (l,m)-th entry

[C−fa ]lm

=

l−1∑
j=0

(−1)m+l−2−j

j!(j + 1)!
l(l − 1) · · · (l − j)·

[
χ{0}(j) + χ

[1,m)
(j)(m− 1)(m− 2) · · · (m− j)

]
am−1−jal−1−j(1− |a|2)j+1.

Finally we are ready to prove a kind of symmetry that the matrix [C−fa ]
has, as follows.

Theorem 5.3. Let U be the unit disc and let a be in U . Then the matrix
[C−fa ] of the composition operator C−fa on the Hardy space H2(bU) with
respect to the orthonormal basis {vm|m = 1, 2, · · · } has the following modified
symmetry: for any positive integers l and m,

l [C−fa ]ml = m [C−fa ]lm,

where the symbol bar means conjugation.

Proof. It is enough to assume that the number m is bigger than l. Then we
have

m [C−fa ]lm

=

l−1∑
j=0

(−1)m+l−2−j

j!(j + 1)!
l(l − 1) · · · (l − j)m·

[
χ{0}(j) + χ

[1,m)
(j)(m− 1)(m− 2) · · · (m− j)

]
al−1−jam−1−j(1− |a|2)j+1

= (−1)m+l−2lmal−1am−1(1− |a|2) +
l−1∑
j=1

(−1)m+l−2−j

j!(j + 1)!
l(l − 1) · · · (l − j)·
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mχ
[1,m)

(j)(m− 1)(m− 2) · · · (m− j)al−1−jam−1−j(1− |a|2)j+1.

Notice that

[1,m) ∩ {j | 0 ≤ j ≤ l − 1} = {1, 2, · · · , l − 1}.
It thus follows that the above identity equals

(−1)m+l−2lmal−1am−1(1− |a|2) +
l−1∑
j=1

(−1)m+l−2−j

j!(j + 1)!
l(l − 1) · · · (l − j)·

mχ
[1,l)

(j)(m− 1)(m− 2) · · · (m− j)al−1−jam−1−j(1− |a|2)j+1.

Now observe that

[1, l) ∩ {j | 0 ≤ j ≤ m− 1} = {1, 2, · · · , l − 1} ∩ {0, 1, · · · ,m− 1}
= {1, 2, · · · , l − 1}.

It thus follows that the above identity equals

l(−1)m+l−2mal−1am−1(1− |a|2) +
m−1∑
j=1

(−1)m+l−2−j

j!(j + 1)!
l(l − 1) · · · (l − j)·

mχ
[1,l)

(j)(m− 1)(m− 2) · · · (m− j)al−1−jam−1−j(1− |a|2)j+1

= l(−1)m+l−2mal−1am−1(1− |a|2) + l

m−1∑
j=1

(−1)m+l−2−j

j!(j + 1)!
m(m− 1) · · · (m− j)·

χ
[1,l)

(j)(l − 1)(l − 2) · · · (l − j)al−1−jam−1−j(1− |a|2)j+1

= l

m−1∑
j=0

(−1)m+l−2−j

j!(j + 1)!
m(m− 1) · · · (m− j)·

[
χ{0}(j) + χ

[1,l)
(j)(l − 1)(l − 2) · · · (l − j)

]
al−1−jam−1−j(1− |a|2)j+1

= l [C−fa ]ml,

which proves Theorem 5.3.
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