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A NOTE ON THE EXTENSION OF ε-ISOMETRIES ON THE

UNIT SPHERE OF BANACH SPACES

Minanur Rohman∗ and İlker Eryılmaz

Abstract. Let X,Y be Banach spaces, SX and SY be the unit sphere of
X and Y , respectively. Let f0 : SX → SY be ε-isometry for some ε ≥ 0.

In this paper, we show that there is an extension f : X → Y of f0 such

that f is linear.

1. Introduction

Isometry mappings are very important because it has properties that pre-
serve continuity and injectivity. Isometric mapping is increasingly becoming
special since every isometry is affine [15]. In other words, an isometry is just
a translation of linear mapping. With this fact, comes the term ε-isometry
f : X → Y which is defined for all η, ξ ∈ X as

|∥f(η)− f(ξ)∥ − ∥η − ξ∥| ≤ ε.

This map f is standard if f (0)=0. With this definition, it is clear that 0-
isometry is nothing but an isometry, so the problem with ε-isometry mapping
becomes interesting for ε > 0.

Assume that U:X→Y is an isometry. With the definition of ε-isometry
above, it is natural that the question arises, ”If there is an ε-isometry f, is
there an isometry U and a constant k such that the furthest distance from the
mapping f and U is kε, or mathematically

∥f(η)− U(η)∥ ≤ kε

for all η ∈ X?”. Hyers and Ulam [14] first posed this problem and found
that for a given standard surjective ε-isometry f there is a surjective isometry
mapping U and k=10, where X and Y are Euclidean spaces. If X = Y = Lp

(0,1), 1<p<∞, then the value of k was equal 12 [2]. After some time, finally,
Gruber [13] first generalized for any Banach space, and Gevirtz [12] found the
value of k=5. This constant was sharpened by Omladič and Šemrl to 2 [17].
In the studies mentioned just now, f is assumed to be a surjective mapping.
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In contrast to Mazur-Ulam who provides the surjectivity condition of U,
Figiel [11] showed that for every (non-surjective) isometry U, there is F :
spanU(η) → X which is a bounded linear operator such that FU = IdX .
Similar to the previous one, a new problem arises, namely ”is there a positive
constant k and a linear mapping F such that ∥Ff (η)− η∥ ≤ kε is true for
any (non-surjective) ε-isometry f between two Banach spaces? ”. However, by
a simple counterexample Qian showed that if the ε-isometry f is a mapping
from an uncomplemented subspace X of a separable Banach space Y into Y,
then no F can be found [19]. Furthermore, he also concluded that if X = Y
= Lp spaces, 1<p<∞, then there is a linear mapping of F with ∥F∥=1 such
that ∥Ff (η)− η∥ ≤ 6ε. Qian’s conclusion provides an opportunity to conduct
research related to (non-surjective) ε-isometries for any Banach spaces.

Cheng, et. al.[5] first showed that the stability of any ε-isometry mapping
can be weakened by using a weak topology. Instead of norm, weak topology
uses the members of dual space to build the basis topology [16]. Research
related to the weak stability of ε-isometry can be found in [3, 6, 21, 22, 27].

Tingley [25] asked the question of whether a surjective isometry on a unit
sphere is a restriction of the whole space? Many results have been given to
answer Tingley’s question, one of which is Ding and Li showing that any sur-
jective isometry on unit spheres of l∞- sum of strictly convex normed spaces
can be extended to linear isometry on the space. Recently, Vestfrid showed
that the ε-isometry in the unit sphere of ln2 and ln∞ can be approximated by
linear isometry [26].

Based on the findings of Ding-Li and Vestfrid, this paper will provide im-
portant properties of ε-isometry mapping on the unit sphere of Banach spaces.
We denote SX as a unit sphere of Banach space X.

2. Preliminaries

This section will contain some of the basic concepts that will be used in
the following discussion. Note that the Mazur-Ulam Theorem holds only for
real Banach spaces. Indeed, the mapping U(η) = η̄ is an isometry which is not
affine. Therefore, X and Y always denote real Banach spaces.

Definition 2.1. Let X and Y be real Banach spaces. A mapping f : X → Y
is called an ε-isometry if

|∥f(η)− f(ξ)∥ − ∥η − ξ∥| ≤ ε.

for all η, ξ ∈ X
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Definition 2.2. ([7] Definition 1.1) Let X be real normed space. The angle
A(η, ξ) between η, ξ ∈ X is defined as

A (η, ξ) = arccos

2−
∥∥∥ η
∥η∥ − ξ

∥ξ∥

∥∥∥2
2


Nabavi Sales provided a generalization of Defintion 2.2 which is used to

determine the characteristics of Hilbert spaces [23]. The interesting thing is
that the angle between two points in Banach spaces is determined by the re-
striction of those points on the unit sphere. Thus A (η, ξ) is only depends on

ℓ (η, ξ) =
∥∥∥ η
∥η∥ − ξ

∥ξ∥

∥∥∥. By this definition, it is clear that 1) ℓ (η, ξ) = 0 if

and only if η = 0 or ξ = 0; 2) ℓ (αη, βξ) = ℓ (η, ξ) for all α, β > 0; and 3)

ℓ : (X − {0})2 → [0, 2] is a continuous mapping.
The following lemma can be found in Dimminnie, et al. (Theorem 2.4) [7]

and Freese, et al. (Theorem 2.1) [8].

Lemma 2.3. Let X be a normed space and η, ξ ∈ X. If ζ ∈ X, ζ = αη+βξ
for α, β > 0 and ∥η∥ = ∥ξ∥ > 0, then ∥ζ − η∥ ≤ ∥ξ − η∥. If ζ ∈ SX , then either
∥ζ − η∥ < ∥ξ − η∥ or ∥ξ + η∥ < ∥ζ + η∥.

Lemma 2.3 says that the length of a vector obtained from a linear combi-
nation of two vectors, when subtracted by one of its constituent vectors, will
always be smaller than the length of subtraction between the two constituent
vectors. Let ζ = α η

∥η∥ + β ξ
∥ξ∥ such that ζ ∈ SX , then Lemma 2.3 says that∥∥∥∥ζ − η

∥η∥

∥∥∥∥ ≤
∥∥∥∥ ξ

∥ξ∥
− η

∥η∥

∥∥∥∥ .
Since ζ, η

∥η∥ ,
ξ

∥ξ∥ ∈ SX , we have ℓ
(
ζ, η

∥η∥

)
≤ ℓ

(
ξ

∥ξ∥ ,
η

∥η∥

)
. This simple

inspection will be used in the proof of Lemma 3.2.

3. Main Results

In this section, we will show that an ε-isometry on the unit sphere of real
Banach spaces can be extended to whole spaces by deploying norm topology.

As in Definition 2.2, instead of A (η, ξ) we will use ℓ (η, ξ) which is appeared
in the following lemma.

Lemma 3.1. Let X and Y be real Banach spaces and f0 : SX → SY be
ε-isometry. Then the positive homogeneous extension f : X → Y of f0 satisfies

∥f (η)− f(ξ)∥ ≤ (3 + 3ε) ∥η − ξ∥
and
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∥f (η) + f (ξ)− f(η + ξ)∥ ≤ (4 + 4ε)min {∥η∥ , ∥ξ∥} ℓ (η, ξ)

for all η, ξ ∈ X.

Proof. By classical rule and definition of ε-isometry we have

∥f (η)− f(ξ)∥ ≤
∥∥∥∥f (η)− ∥η∥ f

(
ξ

∥ξ∥

)∥∥∥∥+

∥∥∥∥∥η∥ f (
ξ

∥ξ∥

)
− f(ξ)

∥∥∥∥
= ∥η∥

∥∥∥∥f (
η

∥η∥

)
− f

(
ξ

∥ξ∥

)∥∥∥∥+ |∥η∥ − ∥ξ∥|
∥∥∥∥f (

ξ

∥ξ∥

)∥∥∥∥
≤ ∥η∥

(∥∥∥∥ η

∥η∥
− ξ

∥ξ∥

∥∥∥∥+ ε

)
+ |∥η∥ − ∥ξ∥| (1 + ε)

≤ ∥η − ξ∥+
∥∥∥∥ξ − ∥η∥ ξ

∥ξ∥

∥∥∥∥+ ∥η∥ ε+ ∥η − ξ∥ (1 + ε)

≤ (3 + 3ε) ∥η − ξ∥
.

Furthermore,

∥f (η) + f (ξ)− f(η + ξ)∥ ≤
∥∥∥∥f (η)− f

(
∥η∥
∥ξ∥

ξ

)∥∥∥∥+

∥∥∥∥f (
∥η∥
∥ξ∥

ξ + ξ

)
− f(η + ξ)

∥∥∥∥
≤

∥∥∥∥η − ∥η∥
∥ξ∥

ξ

∥∥∥∥+ ε+ (3 + 3ε)

∥∥∥∥∥η∥∥ξ∥
ξ − η

∥∥∥∥
= (4 + 4ε)

∥∥∥∥∥η∥∥ξ∥
ξ − η

∥∥∥∥ .
Similarly, we get

∥f (η) + f (ξ)− f(η + ξ)∥ ≤ (4 + 4ε)

∥∥∥∥ξ − ∥ξ∥
∥η∥

η

∥∥∥∥ .
Therefore

∥f (η) + f (ξ)− f(η + ξ)∥ ≤ (4 + 4ε)min {∥η∥ , ∥ξ∥} ℓ (η, ξ)

which completes the proof.

Lemma 3.2. Let η, ξ ∈ X with ∥η∥ ≤ ∥ξ∥ and ∠(η, ξ) be the angle between
η and ξ. If 0 < ∠(η, ξ) ≤ π

2 , there is a pair sequence ηn and ξn such that
limn→∞ ℓ(ηn, ξn) = 0.

Proof. Put η1 = η + ∥η∥
∥ξ∥ ξ and ξ1 = ξ − ∥η∥

∥ξ∥ ξ with ∥η1∥ ≤ ∥ξ1∥. Then

η1 + ξ1 = η + ξ and ∥η1∥+ ∥ξ1∥ ≤ ∥η∥+ ∥ξ∥. Repeating this process will give

ηn+1 = ηn +
∥ηn∥
∥ξn∥

ξn
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and

ξn+1 = ξn − ∥ηn∥
∥ξn∥

ξn

with ∥ηn+1∥ ≤ ∥ξn+1∥, ηn+1 + ξn+1 = η+ ξ and ∥ηn+1∥+ ∥ξn+1∥ ≤ ∥η∥+ ∥ξ∥.
Equivalently,

(1) ηn+1 = ∥ηn∥
(

ηn
∥ηn∥

+
ξn
∥ξn∥

)
and

(2) ξn+1 = (∥ξn∥ − ∥ηn∥)
ξn
∥ξn∥

Since the scalar product does not change the size of the angle between the
two vectors, i.e. ∥ηn∥ and ∥ξn∥−∥ηn∥, respectively, in Equation 1 and Equation
2, we get

∠ (ηn+1, ξn+1) = ∠

(
ηn

∥ηn∥
+

ξn
∥ξn∥

,
ξn

∥ξn∥

)
≤ ∠ (ηn, ξn) .

Let A = span(η, ξ) which is a subspace of X. By definition of ηn, ξn, it is
clear that ηn, ξn ∈ A. Put p = min {∥η∥ : η ∈ SA}, q = max {∥η∥ : η ∈ SA},
and ∠n = ∠ (ηn, ξn). These assumptions show that there exist an, bn ∈ SA

such that p = ∥an∥, q = ∥bn∥ and ∠n = ∠ (an, bn). Hence

(3) ∠n+1 = ∠

(
ηn

∥ηn∥
+

ξn
∥ξn∥

,
ξn

∥ξn∥

)
≤ ∠ (an + bn, bn) ≤ ∠ (an, bn)= ∠n.

Considering these facts, by comparing the triangle of the hypotenuse q with
the angle ∠n and the triangle of the hypotenuse ∥an + bn∥ with the angle
∠ (an + bn, bn), geometrically it is easy to check that

q sin∠n = ∥an + bn∥ sin∠ (an + bn, bn) .

Therefore

(4) sin∠ (an + bn, bn) =
q

∥an + bn∥
sin∠n.

On the other hand, the assumption that 0 < ∠(η, ξ) ≤ π
2 implies 0 <

∠n ≤ π
2 and deploying cosinus law gives

√
p2 + q2 ≤ ∥an + bn∥. Note that if

∠ (η, ξ) > π
2 , then just take −ξ to get ∠(η,−ξ) ≤ π

2 . Combining these results
(Inequality 3 and Equation 4) leads us to get

sin∠n+1 ≤ sin∠ (an + bn, bn) ≤
q√

p2 + q2
sin∠n.
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The last inequality gives limn→∞ ∠n = limn→∞ ∠ (ηn, ξn) = 0. By Def-

inition 2.2, this is possible if and only if
∥∥∥ ηn

∥ηn∥ − ξn
∥ξn∥

∥∥∥ → 0, that is there

exist subsequences
ηni

∥ηni∥
and

ξni

∥ξni∥
that converge to norm-one vector in A and

ℓ (ηni , ξni) → 0. The definition of mapping ℓ and the fact we get in Equation
1, together with the discussion of Lemma 2.3 give

ℓ (ηn+1, ξn+1) = ℓ

(
ηn
∥ηn∥

+
ξn
∥ξn∥

,
ξn
∥ξn∥

)
≤

∥∥∥∥ ηn
∥ηn∥

− ξn
∥ξn∥

∥∥∥∥
= ℓ (ηn, ξn) .

This shows that ℓ (ηn, ξn) is non-increasing and hence ℓ (ηn, ξn) → 0.

Now we can state the main theorem of this paper.

Theorem 3.3. Let X and Y be real Banach spaces and f0 : SX → SY

be an ε-isometry mapping. f : X → Y is a linear ε-isometry if and only if
f (η0 + ξ0) = f (η0) + f(ξ0) for all η0, ξ0 ∈ SX .

Proof. The first part is just the consequence of the definition of linear
mapping, thus we just prove the second part. Assume that f (η0 + ξ0) =
f (η0) + f(ξ0) for all η0, ξ0 ∈ SX . Take η, ξ ∈ X. If ∥η∥ = ∥ξ∥ = 0, then
the proof is just the consequence of the Mazur-Ulam theorem [15]. Assume
that ∥η∥ = ∥ξ∥ > 0.

f (η) + f (ξ) = ∥η∥ f0
(

η

∥η∥

)
+ ∥ξ∥ f0

(
ξ

∥ξ∥

)
= ∥η∥ f0

(
η

∥η∥
+

ξ

∥ξ∥

)
= f (η + ξ)

which shows the linearity of f . Therefore, it remains only to show that f is a
linear mapping for ∥ξ∥ > ∥η∥ > 0. In this case
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f (η) + f (ξ) = f (η) + f

(
∥η∥
∥ξ∥

ξ

)
− f

(
∥η∥
∥ξ∥

ξ

)
+ f (ξ)

= ∥η∥ f0
(

η

∥ξ∥

)
+ ∥η∥ f0

(
ξ

∥ξ∥

)
− ∥η∥ f0

(
ξ

∥ξ∥

)
+ ∥ξ∥ f0

(
ξ

∥ξ∥

)
= ∥η∥ f0

(
η

∥ξ∥
+

ξ

∥ξ∥

)
+ (∥ξ∥ − ∥η∥)f0

(
ξ

∥ξ∥

)
= f

(
η +

∥η∥
∥ξ∥

ξ

)
+ f

(
ξ − ∥η∥

∥ξ∥
ξ

)

Take a pair sequence ηn+1 = ηn + ∥ηn∥
∥ξn∥ ξn and ξn+1 = ξn − ∥ηn∥

∥ξn∥ ξn with

∥ηn∥ ≤ ∥ξn∥ as in Lemma 3.2. Hence f(η) + f(ξ) = f(η1) + f(ξ1). Similarly,

f (η1) + f (ξ1) = f (η1) + f

(
∥η1∥
∥ξ1∥

ξ1

)
− f

(
∥η1∥
∥ξ1∥

ξ1

)
+ f (ξ1)

= ∥η1∥ f0
(

η1
∥ξ1∥

)
+ ∥η1∥ f0

(
ξ1

∥ξ1∥

)
− ∥η1∥ f0

(
ξ1

∥ξ1∥

)
+ ∥ξ1∥ f0

(
ξ1

∥ξ1∥

)
= ∥η1∥ f0

(
η1
∥ξ1∥

+
ξ1
∥ξ1∥

)
+ (∥ξ1∥ − ∥η1∥)f0

(
ξ1

∥ξ1∥

)
= f

(
η1 +

∥η1∥
∥ξ1∥

ξ1

)
+ f

(
ξ1 −

∥η1∥
∥ξ1∥

ξ1

)
= f (η2) + f (ξ2)

Repeating the process for all n we have f (η)+f (ξ) = f (ηn)+f (ξn). Thus,
the construction of ηn, ξn and Lemma 3.1 give

∥f (η) + f (ξ)− f(η + ξ)∥ = ∥f (ηn) + f (ξn)− f(ηn + ξn)∥
≤ (4 + 4ε)min {∥ηn∥ , ∥ξn∥} ℓ (ηn, ξn)

≤ (4 + 4ε) (∥ηn∥+ ∥ξn∥) ℓ (ηn, ξn)

and hence by Lemma 3.2 we have f (η) + f (ξ) = f(η + ξ).

4. Conclusion

In this paper, we show that linear ε-isometry exists as an extension of ε-
isometry on the unit sphere of a Banach spaces. This important result is in
line with some of the results that have been found previously.
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[10] M. Fabian, P. Habala, P. Hájek, V. Montesinos, and V. Zizler, Banach Space Theory:

The Basis for Linear and Nonlinear Analysis, Springer, New York, 2010.

[11] T. Figiel, On nonlinear isometric embedding of normed linear space, Bull. Acad. Polon.
Sci. Ser. Sci. Math. Astronom. Phys. 16 (1986), no. 1, 185–188.

[12] J. Gevirtz, Stability of isometries on Banach spaces, Proc. Amer. Math. Soc. 89 (1983),

no. 4, 633–636.
[13] P. M. Gruber, Stability of isometries, Trans. Amer. Math. Soc. 45 (1978), no. 1, 263–277.

[14] D. H. Hyers and S. M. Ulam, On approximate isometries, Bull. Amer. Math. Soc. 51

(1945), no. 4, 288–292.
[15] S. Mazur and S. Ulam, Sur les transformations isométriques d’espaces vectoriels normés,

C R Acad. Sci. Paris. 194 (1932), no. 1, 946–948.

[16] R. E. Megginson, An Introduction to Banach Space Theory, Springer, New York, 1991.
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