DOI QR코드

DOI QR Code

Fabrication and Filtration Performance Analysis of Hierarchical Nanofiber Mats Based on Heterogeneous Macromolecular Interaction

이종 고분자간 상호작용 기반 계층적 나노섬유 집합체 형성 및 여과 특성 고찰

  • Eunmo Ku (Department of Fiber Convergence Materials Engineering, School of Polymer System, Dankook University) ;
  • Hyun Ju Oh (Advanced Textile R&D Department, Korea Institute of Industrial Technology (KITECH)) ;
  • Yeong Og Choi (Advanced Textile R&D Department, Korea Institute of Industrial Technology (KITECH)) ;
  • Byoung-Sun Lee (Department of Fiber Convergence Materials Engineering, School of Polymer System, Dankook University)
  • 구은모 (단국대학교 고분자시스템공학부 파이버융합소재전공) ;
  • 오현주 (한국생산기술연구원 섬유솔루션 부문) ;
  • 최영옥 (한국생산기술연구원 섬유솔루션 부문) ;
  • 이병선 (단국대학교 고분자시스템공학부 파이버융합소재전공)
  • Received : 2024.01.27
  • Accepted : 2024.02.19
  • Published : 2024.02.29

Abstract

Nanofibers with ultrafine diameters (< 50 nm) have been reported to exhibit a significant surface area and a high filtration efficiency. Recently, the ionic surfactants have been used for fabricating nanofibers with ultrafine diameters. However, the use of ionic surfactants is not desirable because of the electrophoretic behavior and following instability of the ions with the high electric potential during the electrospinning process. In this study, hierarchical nanofiber assemblies including ultrafine nanofibers with diameters < 50 nm were designed by utilizing heterogenous molecular interactions of different types of polymers with high dipole moments (polyacrylonitrile (PAN), poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP)), and their filtration performances were evaluated based on EN 143 standard. The fraction of nanofibers with ultrafine diameters was adjusted from 4% to 46%, and the β-phase fraction of PVdF increased from the initial 71.6% to a maximum of 85.37%. Among various PAN/PVdF samples, the PAN/PVdF 3:7 represented the highest efficiency of 87.6% even at low basis weight due to its ultrafine diameter, and all samples demonstrated efficiency exceeding 99.3% as basis weight increased. In conclusion, this study successfully achieved process stability and excellent filtration performance by establishing a method to manufacture hierarchical nanofiber assemblies without the use of ionic surfactants, relying solely on the interaction of heterogeneous polymers.

Keywords

Acknowledgement

이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원(NRF-2022R1A2C2010760)과 한국생산기술연구원의 지원 (KITECH) (EH230009)을 받아 수행 된 연구임.

References

  1. T. Lu, J. Cui, Q. Qu, Y. Wang, J. Zhang, R. Xiong, W. Ma, and C. Huang, "Multistructured Electrospun Nanofibers for Air Filtration: A Review", ACS Appl. Mater. Interfaces, 2021, 13, 23293-23313. https://doi.org/10.1021/acsami.1c06520
  2. Covid-Excess Mortality Collaborators, "Estimating Excess Mortality due to the COVID-19 Pandemic: A Systematic Analysis of COVID-19-related Mortality, 2020-21", Lancet, 2022, 399, 1513-1536. https://doi.org/10.1016/S0140-6736(21)02796-3
  3. M. Li, Q. Zhang, J. Kurokawa, J.-H. Woo, K. He, Z. Lu, T. Ohara, Y. Song, D. G. Streets, G. R. Carmichael, Y. Cheng, C. Hong, H. Huo, X. Jiang, S. Kang, F. Liu, H. Su, and B. Zheng, "MIX: A Mosaic Asian Anthropogenic Emission Inventory under the International Collaboration Framework of the MICS-Asia and HTAP", Atmos. Chem. Phys., 2017, 17, 935-963. https://doi.org/10.5194/acp-17-935-2017
  4. M. Bae, B. U. Kim, H. C. Kim, and S. Kim, "A Multiscale Tiered Approach to Quantify Contributions: A Case Study of PM2.5 in South Korea During 2010-2017", Atmosphere, 2020, 11, 141.
  5. S. Lee, J. Kim, M. Choi, J. Hong, H. Lim, T. F. Eck, B. N. Holben, J.-Y. Ahn, J. Kim, and J.-H. Koo, "Analysis of Long-range Transboundary Transport (LRTT) Effect on Korean Aerosol Pollution during the KORUS-AQ Campaign", Atmos. Environ., 2019, 204, 53-67. https://doi.org/10.1016/j.atmosenv.2019.02.020
  6. M. Zhu, D. Hua, H. Pan, F. Wang, B. Manshian, S. J. Soenen, R. Xiong, and C. Huang, "Green Electrospun and Crosslinked Poly(vinyl alcohol)/poly(acrylic acid) Composite Membranes for Antibacterial Effective Air Filtration", J. Colloid Interface Sci., 2018, 511, 411-423. https://doi.org/10.1016/j.jcis.2017.09.101
  7. E. Moore, L. Chatzidiakou, M. O. Kuku, R. L. Jones, L. Smeeth, S. Beevers, F. J. Kelly, B. Barratt, and J. K. Quint, "Global Associations between Air Pollutants and Chronic Obstructive Pulmonary Disease Hospitalizations. A Systematic Review", Ann. Am. Thorac. Soc., 2016, 13, 1814-1827. https://doi.org/10.1513/AnnalsATS.201601-064OC
  8. A. Donateo, E. Gregoris, A. Gambaro, E. Merico, R. Giua, A. Nocioni, and D. Contini, "Contribution of Harbour Activities and Ship Traffic to PM2.5, Particle Number Concentrations and PAHs in a Port City of the Mediterranean Sea (Italy)", Environ. Sci. Pollut. Res. Int., 2014, 21, 9415-9429. https://doi.org/10.1007/s11356-014-2849-0
  9. A. Podgorski, A. Balazy, and L. Gradon, "Application of Nanofibers to Improve the Filtration Efficiency of the Most Penetrating Aerosol Particles in Fibrous Filters", Chem. Eng. Sci., 2006, 61, 6804-6815. https://doi.org/10.1016/j.ces.2006.07.022
  10. S. X. Wang, C. C. Yap, J. He, C. Chen, S. Y. Wong, and X. Li, "Electrospinning: a Facile Technique for Fabricating Functional Nanofibers for Environmental Applications", Nanotechnol. Rev., 2016, 5, 51-73. https://doi.org/10.1515/ntrev-2015-0065
  11. L. Zhang, L. Li, L. Wang, J. Nie, and G. Ma, "Multilayer Electrospun Nanofibrous Membranes with Antibacterial Property for Air Filtration", Appl. Surface Sci., 2020, 515, 145962.
  12. A. K. Muller, Z. K. Xu, and A. Greiner, "Preparation and Performance Assessment of Low-Pressure Affinity Membranes Based on Functionalized, Electrospun Polyacrylates for Gold Nanoparticle Filtration", ACS Appl. Mater. Interfaces, 2021, 13, 15659-15667. https://doi.org/10.1021/acsami.1c01217
  13. H. K. Kang, H. J. Oh, J. Y. Kim, H. Y. Kim, and Y. O. Choi, "Effect of Process Control Parameters on the Filtration Performance of PAN-CTAB Nanofiber/Nanonet Web Combined with Meltblown Nonwoven", Polymers, 2021, 13, 3591.
  14. X. Li, C. Wang, X. Huang, T. Zhang, X. Wang, M. Min, L. Wang, H. Huang, and B. S. Hsiao, "Anionic Surfactant-Triggered Steiner Geometrical Poly(vinylidene fluoride) Nanofiber/Nanonet Air Filter for Efficient Particulate Matter Removal", ACS Appl. Mater. Interfaces, 2018, 10, 42891-42904. https://doi.org/10.1021/acsami.8b16564
  15. S. M. Damaraju, S. Wu, M. Jaffe, and T. L. Arinzeh, "Structural Changes in PVDF Fibers due to Electrospinning and Its Effect on Biological Function", Biomed. Mater., 2013, 8, 045007.
  16. D. H. Reneker and A. L. Yarin, "Electrospinning Jets and Polymer Nanofibers", Polymer, 2008, 49, 2387-2425. https://doi.org/10.1016/j.polymer.2008.02.002
  17. A. Samadi, S. M. Hosseini, and M. Mohseni, "Investigation of the Electromagnetic Microwaves Absorption and Piezoelectric Properties of Electrospun Fe3O4-GO/PVDF Hybrid Nanocomposites", Org. Electr., 2018, 59, 149-155. https://doi.org/10.1016/j.orgel.2018.04.037
  18. Y. K. Low, N. Meenubharathi, N. D. Niphadkar, F. Y. Boey, and K. W. Ng, "α- and β-poly(vinylidene fluoride) Evoke Different Cellular Behaviours", J. Biomater. Sci. Polym. Ed., 2011, 22, 1651-1667. https://doi.org/10.1163/092050610X519471
  19. A. Lund and B. Hagstrom, "Melt Spinning of Poly(vinylidene fluoride) Fibers and the Influence of Spinning Parameters on β-phase Crystallinity", J. Appl. Polym. Sci., 2010, 116, 2685-2693. https://doi.org/10.1002/app.31789
  20. C. Wan and C. R. Bowen, "Multiscale-structuring of Polyvinylidene Fluoride for Energy Harvesting: The Impact of Molecular-, Micro- and Macro-structure", J. Mater. Chem. A, 2017, 5, 3091-3128. https://doi.org/10.1039/C6TA09590A
  21. W. A. Yee, M. Kotaki, Y. Liu, and X. Lu, "Morphology, Polymorphism Behavior and Molecular Orientation of Electrospun Poly(vinylidene fluoride) Fibers", Polymer, 2007, 48, 512-521. https://doi.org/10.1016/j.polymer.2006.11.036
  22. C. M. Costa, M. M. Silva, and S. Lanceros-Mendez, "Battery Separators Based on Vinylidene Fluoride (VDF) Polymers and Copolymers for Lithium Ion Battery Applications", RSC Adv., 2013, 3, 11404-11417. https://doi.org/10.1039/c3ra40732b
  23. J. Chang, M. Dommer, C. Chang, and L. Lin, "Piezoelectric Nanofibers for Energy Scavenging Applications", Nano Energy, 2012, 1, 356-371. https://doi.org/10.1016/j.nanoen.2012.02.003
  24. S. Kalani, R. Kohandani, and R. Bagherzadeh, "Flexible Electrospun PVDF-BaTiO3 Hybrid Structure Pressure Sensor with Enhanced Efficiency", RSC Adv., 2020, 10, 35090-35098. https://doi.org/10.1039/D0RA05675H
  25. N. Vinh and H.-M. Kim, "Electrospinning Fabrication and Performance Evaluation of Polyacrylonitrile Nanofiber for Air Filter Applications", Appl. Sci., 2016, 6, 235.
  26. C. Liu, P. C. Hsu, H. W. Lee, M. Ye, G. Zheng, N. Liu, W. Li, and Y. Cui, "Transparent Air Filter for High-efficiency PM2.5 Capture", Nat. Commun., 2015, 6, 6205.
  27. J. Su, G. Yang, C. Cheng, C. Huang, H. Xu, and Q. Ke, "Hierarchically Structured TiO2/PAN Nanofibrous Membranes for High-efficiency Air Filtration and Toluene Degradation", J. Colloid Interface Sci., 2017, 507, 386-396. https://doi.org/10.1016/j.jcis.2017.07.104
  28. B. S. Lee, B. Park, H. S. Yang, J. W. Han, C. Choong, J. Bae, K. Lee, W. R. Yu, U. Jeong, U. I. Chung, J. J. Park, and O. Kim, "Effects of Substrate on Piezoelectricity of Electrospun Poly(vinylidene fluoride)-nanofiber-based Energy Generators", ACS Appl. Mater. Interfaces, 2014, 6, 3520-3527. https://doi.org/10.1021/am405684m
  29. A. Gupta, V. J. Novick, P. Biswas, and P. R. Monson, "Effect of Humidity and Particle Hygroscopicity on the Mass Loading Capacity of High Efficiency Particulate Air (HEPA) Filters", Aerosol Sci. Technol., 1993, 19, 94-107. https://doi.org/10.1080/02786829308959624
  30. S. Yang, W. M. G. Lee, H. L. Huang, Y. C. Huang, C. H. Luo, C. C. Wu, and K. P. Yu, "Aerosol Penetration Properties of an Electret Filter with Submicron Aerosols with Various Operating Factors", J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng., 2007, 42, 51-57.  https://doi.org/10.1080/10934520601015651