DOI QR코드

DOI QR Code

붕화물 섬유 소재를 위한 (Zr1-xMx)B2 및 (Hf1-xMx)B2 (M=Ti, V, Cr, Zr, Nb, Mo, Hf, Ta 및 W) 기계적 특성 조사: 제1원리 계산

Mechanical Properties of (Zr1-xMx)B2 and (Hf1-xMx)B2 (M=Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W) for Diboride Fiber Materials: Ab Initio Calculations

  • 이하은 (숭실대학교 신소재공학과) ;
  • 김효경 (숭실대학교 신소재공학과) ;
  • 곽종욱 (숭실대학교 신소재공학과) ;
  • 경수아 (숭실대학교 신소재공학과) ;
  • 김지웅 (숭실대학교 신소재공학과)
  • Haeun Lee (Department of Materials Science and Engineering, Soongsil University) ;
  • Hyokyeong Kim (Department of Materials Science and Engineering, Soongsil University) ;
  • Jongwook Kwak (Department of Materials Science and Engineering, Soongsil University) ;
  • Sooah Kyung (Department of Materials Science and Engineering, Soongsil University) ;
  • Jiwoong Kim (Department of Materials Science and Engineering, Soongsil University)
  • 투고 : 2023.12.02
  • 심사 : 2024.01.30
  • 발행 : 2024.02.29

초록

Zirconium diboride (ZrB2) and hafnium diboride (HfB2) fibers have not been studied as extensively as metal carbides and nitrides for transition metal solid solutions due to a lack of processing technology. However, their remarkable physical properties make them ideal for high-temperature applications. In this study, we investigated the mechanical properties of solid solution diboride using ab initio calculations. Specifically, we focused on the (Zr1-xMx)B2 and (Hf1-xMx)B2 (M=Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W) compositions. Our findings revealed that ZrB2 and HfB2 have high Young's moduli of 524.12 and 551.41 GPa, respectively. Additionally, the solid solutions of (Zr0.25Ti0.75)B2 and (Hf0.25Ti0.75)B2 showed superior shear and Young's modulus. We also compared the mechanical properties of titanium-doped diboride solid solutions with undoped ZrB2 and HfB2 at high temperatures. Our study provides valuable insights into the potential development of diborides as ceramic fibers tailored for high-temperature applications.

키워드

과제정보

이 논문은 2022년도 정부(방위사업청)의 재원으로 국방기술진흥연구소의 지원을 받아 수행된 연구임(KRIT-CT-22-028, 극초음속 비행체용 고내열 및 전자파제어 복합소재 기술(하이브리드 구조 초고내열 세라믹섬유강화 복합소재 제조), 2022).

참고문헌

  1. S. Tang and C. Hu, "Design, Preparation and Properties of Carbon Fiber Reinforced Ultra-high Temperature Ceramic Composites for Aerospace Applications: A Review", J. Mater. Sci. Technol., 2017, 33, 117-130.  https://doi.org/10.1016/j.jmst.2016.08.004
  2. A. Paul, J. Binner, and B. Vaidhyanathan, "UHTC Composites for Hypersonic Applications, Ultra-high Temperature Ceramics: Materials for Extreme Environment Applications", John Wiley & Sons, 2014, pp.144-166. 
  3. T. S. Murthy, J. Sonber, K. Sairam, S. Majumdar, and V. Kain, "Boron-based Ceramics and Composites for Nuclear and Space Applications: Synthesis and Consolidation, Handbook of Advanced Ceramics and Composites: Defense, Security, Aerospace and Energy Applications", Springer, 2020, pp.703-738. 
  4. M. M. Nasseri, "Comparison of HfB2 and ZrB2 Behaviors for Using in Nuclear Industry", Ann. Nucl. Energy, 2018, 114, 603-606.  https://doi.org/10.1016/j.anucene.2017.12.060
  5. G. J. Zhang, H. T. Liu, W. W. Wu, J. Zou, D. W. Ni, W. M. Guo, J. X. Liu, and X. G. Wang, "Reactive Processes for Diboride-Based Ultra-High Temperature Ceramics, Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications", John Wiley & Sons, 2014, pp.33-59. 
  6. Y. G. Gogotsi and R. A. Andrievski, "Materials Science of Carbides, Nitrides and Borides", Springer Science & Business Media, 2012. 
  7. Y. Zhu, Q. Li, T. Mei, and Y. Qian, "Solid State Synthesis of Nitride, Carbide and Boride Nanocrystals in an Autoclave", J. Mater. Chem., 2011, 21, 13756-13764.  https://doi.org/10.1039/c1jm11893e
  8. Y. B. Paderno, V. B. Filipov, V. N. Paderno, and A. Sayir, "Submicron Size Single Crystal MeIVB2 (Me=Ti, Zr, Hf) Fibers", J. Eur. Ceram. Soc., 2005, 25, 1301-1305.  https://doi.org/10.1016/j.jeurceramsoc.2005.01.027
  9. J. Du, H. Zhang, Y. Geng, W. Ming, W. He, J. Ma, Y. Cao, X. Li, and K. Liu, "A Review on Machining of Carbon Fiber Reinforced Ceramic Matrix Composites", Ceram. Int., 2019, 45, 18155-18166.  https://doi.org/10.1016/j.ceramint.2019.06.112
  10. A. G. Evans, "The Mechanical Performance of Fiber-reinforced Ceramic Matrix Composites", Mater. Sci. Eng. A, 1989, 107, 227-239.  https://doi.org/10.1016/0921-5093(89)90391-2
  11. Y. Arai, R. Inoue, K. Goto, and Y. Kogo, "Carbon Fiber Reinforced Ultra-high Temperature Ceramic Matrix Composites: A Review", Ceram. Int., 2019, 45, 14481-14489.  https://doi.org/10.1016/j.ceramint.2019.05.065
  12. D. Edie, "The Effect of Processing on the Structure and Properties of Carbon Fibers", Carbon, 1998, 36, 345-362.  https://doi.org/10.1016/S0008-6223(97)00185-1
  13. M. Sharma, S. Gao, E. Mader, H. Sharma, L. Y. Wei, and J. Bijwe, "Carbon Fiber Surfaces and Composite Interphases", Compos. Sci. Technol., 2014, 102, 35-50.  https://doi.org/10.1016/j.compscitech.2014.07.005
  14. M. S. Kim, J. D. Lee, H. S. Son, and B. O. Lee, "Evaluation of Stitching Properties of Thermoplastic and Thermosetting Carbon Fiber-Reinforced Composite", Text. Sci. Eng., 2021, 58, 298-304. 
  15. А. Stepashkin, D. Chukov, F. Senatov, A. Salimon, A. Korsunsky, and S. Kaloshkin, "3D-printed PEEK-carbon Fiber (CF) Composites: Structure and Thermal Properties", Compos. Sci. Technol., 2018, 164, 319-326.  https://doi.org/10.1016/j.compscitech.2018.05.032
  16. Y.-Q. Wang, B.-L. Zhou, and Z.-M. Wang, "Oxidation Protection of Carbon Fibers by Coatings", Carbon, 1995, 33, 427-433.  https://doi.org/10.1016/0008-6223(94)00167-X
  17. H. O. Lee, P. H. Caraballa, A. G. Bregman, N. S. Bell, J. R. Nicholas, M. Ringgold, and L. J. Treadwell, "Fabrication of Tantalum and Hafnium Carbide Fibers via ForcespinningTM for Ultrahigh-Temperature Applications", Adv. Mater. Sci. Eng., 2021, 2021, 6672746. 
  18. P. Wang, F. Liu, H. Wang, H. Li, and Y. Gou, "A Review of Third Generation SiC Fibers and SiCf/SiC Composites", J. Mater. Sci. Technol., 2019, 35, 2743-2750. https://doi.org/10.1016/j.jmst.2019.07.020
  19. S. Wang, J. Bi, G. Liang, J. Yuan, Y. Chen, and L. Qiao, "Titanium Boride Fibers Prepared by Chloride-assisted Carbothermic Method for High-performance Electromagnetic Wave Absorption", Ceram. Int., 2023, 49, 26110-26118. 
  20. G. Kresse and J. Hafner, "Ab Initio Molecular-dynamics Simulation of the Liquid-metal-amorphous-semiconductor Transition in Germanium", Phys. Rev. B Condens. Matter, 1994, 49, 14251-14269.  https://doi.org/10.1103/PhysRevB.49.14251
  21. G. Kresse and J. Furthmuller, "Efficient Iterative Schemes for ab Initio Total-energy Calculations Using a Plane-wave Basis Set", Phys. Rev. B Condens. Matter, 1996, 54, 11169-11186.  https://doi.org/10.1103/PhysRevB.54.11169
  22. G. Kresse and J. Furthmuller, "Efficiency of ab-initio Total Energy Calculations for Metals and Semiconductors Using a Plane-wave Basis Set", Comput. Mater. Sci., 1996, 6, 15-50.  https://doi.org/10.1016/0927-0256(96)00008-0
  23. H. J. Monkhorst and J. D. Pack, "Special Points for Brillouin-zone Integrations", Phys. Rev. B, 1976, 13, 5188-5192.  https://doi.org/10.1103/PhysRevB.13.5188
  24. M. A. Meyers and K. K. Chawla, "Mechanical Behavior of Materials", Cambridge University Press, 2008. 
  25. X.-G. Lu, M. Selleby, and B. Sundman, "Calculations of Thermophysical Properties of Cubic Carbides and Nitrides Using the Debye-Gruneisen Model", Acta Mater., 2007, 55, 1215-1226.  https://doi.org/10.1016/j.actamat.2006.05.054
  26. J. Kim and S. Kang, "First Principles Investigation of Temperature and Pressure Dependent Elastic Properties of ZrC and ZrN Using Debye-Gruneisen Theory", J. Alloys Compd., 2012, 540, 94-99.  https://doi.org/10.1016/j.jallcom.2012.04.085
  27. M. Blanco, E. Francisco, V. Luana, "GIBBS: Isothermal-isobaric Thermodynamics of Solids from Energy Curves Using a Quasi-harmonic Debye Model", Comput. Phys. Commun., 2004, 158, 57-72.  https://doi.org/10.1016/j.comphy.2003.12.001
  28. Y. Pan, H. Huang, X. Wang, and Y. Lin, "Phase Stability and Mechanical Properties of Hafnium Borides: A First-principles Study", Comput. Mater. Sci., 2015, 109, 1-6.  https://doi.org/10.1016/j.commatsci.2015.06.030
  29. N. L. Okamoto, M. Kusakari, K. Tanaka, H. Inui, M. Yamaguchi, and S. Otani, "Temperature Dependence of Thermal Expansion and Elastic Constants of Single Crystals of ZrB2 and the Suitability of ZrB2 as a Substrate for GaN Film", J. Appl. Phys., 2003, 93, 88-93.  https://doi.org/10.1063/1.1525404
  30. F. Nakamori, Y. Ohishi, H. Muta, K. Kurosaki, K.-I. Fukumoto, and S. Yamanaka, "Mechanical and Thermal Properties of Bulk ZrB2", J. Nucl. Mater., 2015, 467, 612-617.  https://doi.org/10.1016/j.jnucmat.2015.10.024
  31. J. Kim, M. Kim, H. Kim, S. Park, and J. Kim, "Insights into the Ultra-high Temperature Solid Solutions Hf-Ta-CN Quaternary System Using High-throughput Calculation", J. Mater. Res. Technol., 2023, 22, 2239-2250. 
  32. I. R. Shein and A. L. Ivanovskii, "Elastic Properties of Mono-and polycrystalline Hexagonal AlB2-like Diborides of s, p and d metals from First-principles Calculations", J. Phys. Condens. Matter, 2008, 20, 415218. 
  33. X. Zhang, X. Luo, J. Han, J. Li, and W. Han, "Electronic Structure, Elasticity and Hardness of Diborides of Zirconium and Hafnium: First Principles Calculations", Comput. Mater. Sci., 2008, 44, 411-421.  https://doi.org/10.1016/j.commatsci.2008.04.002
  34. B. R. Golla, A. Mukhopadhyay, B. Basu, and S. K. Thimmappa, "Review on Ultra-high Temperature Boride Ceramics", Prog. Mater. Sci., 2020, 111, 100651. 
  35. A. D. Stanfield, G. E. Hilmas, and W. G. Fahrenholtz, "Effects of Ti, Y, and Hf Additions on the Thermal Properties of ZrB2", J. Eur. Ceram. Soc., 2020, 40, 3824-3828.  https://doi.org/10.1016/j.jeurceramsoc.2020.04.011
  36. J. M. Schneider, D. Music, and Z. Sun, "Effect of the Valence Electron Concentration on the Bulk Modulus and Chemical Bonding in Ta2AC and Zr2AC (A= Al, Si, and P)", J. Appl. Phys., 2005, 97, 066105. 
  37. D. G. Clerc and H. M. Ledbetter, "Mechanical Hardness: A Semiempirical Theory Based on Screened Electrostatics and Elastic Shear", J. Phys. Chem. Solids, 1998, 59, 1071-1095.  https://doi.org/10.1016/S0022-3697(97)00251-5
  38. Y. Pan and S. Chen, "Influence of Alloying Elements on the Mechanical and Thermodynamic Properties of ZrB2 Boride", Vacuum, 2022, 198, 110898. 
  39. Y. Zhou, J. Wang, Z. Li, X. Zhan, and J. Wang in "Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications" (W. G. Fahrenholtz, E. J. Wuchina, W. E. Lee, and Y. Zhou Eds.), 2014, pp.60-82. 
  40. X. Gu, C. Liu, H. Guo, K. Zhang, and C. Chen, "Sorting Transition-metal Diborides: New Descriptor for Mechanical Properties", Acta Mater., 2021, 207, 116685. 
  41. H. B. Xu, Y. X. Wang, and V. C. Lo, "First-principles Study of CrB4 as a High Shear Modulus Compound", Phys. Status Solidi Rapid. Res. Lett., 2011, 5, 13-15.  https://doi.org/10.1002/pssr.201004437
  42. K. I. Takagi, "Development and Application of High Strength Ternary Boride Base Cermets", J. Solid State Chem., 2006, 179, 2809-2818. https://doi.org/10.1016/j.jssc.2006.01.023