DOI QR코드

DOI QR Code

Developing Highly Oriented Graphene Fibers for Field Emission Applications

고 배향 그래핀 섬유의 제조 및 전계 방출 특성 평가

  • Woojae Jeong (Department of Organic and Nano Engineering, Human-Tech Convergence Program, Hanyang University) ;
  • Haneul Nam (Department of Organic and Nano Engineering, Human-Tech Convergence Program, Hanyang University) ;
  • Sora Lee (AweXome Ray Inc.) ;
  • Young Bae Kim (AweXome Ray Inc.) ;
  • Keunsoo Jeong (AweXome Ray Inc.) ;
  • Se Hoon Gihm (AweXome Ray Inc.) ;
  • Tae Hee Han (Department of Organic and Nano Engineering, Human-Tech Convergence Program, Hanyang University)
  • 정우재 (한양대학교 유기나노공학과 휴먼테크융합전공) ;
  • 남하늘 (한양대학교 유기나노공학과 휴먼테크융합전공) ;
  • 이소라 (어썸레이 주식회사) ;
  • 김영배 (어썸레이 주식회사) ;
  • 정근수 (어썸레이 주식회사) ;
  • 김세훈 (어썸레이 주식회사) ;
  • 한태희 (한양대학교 유기나노공학과 휴먼테크융합전공)
  • Received : 2023.12.21
  • Accepted : 2024.01.08
  • Published : 2024.02.29

Abstract

Field emission (FE) applications, essential in cutting-edge technologies like microwave devices and particle accelerators, increasingly utilize carbon nanomaterials like graphene and carbon nanotubes. However, their production encompasses complex challenges, and structural intricacies affect their efficacy. In this research, we advanced the development of graphene fibers using a wet-spinning method, marking a progression in FE applications. The process entailed control of fiber coagulation and draw ratios to optimize their internal structure. Furthermore, we introduced a continuous reduction technique to increasing the electrical conductivity of the graphene fibers. The produced fibers showed threshold electric fields of 1.1, 1.0, 0.8 and 0.6 V/㎛, maximum currents density of 1.09, 1.19, 1.22 and 1.25 A/cm2. Field enhancement factor (β) 9900, 10216, 12007 and 20830 showed marked improvement correlating with increased draw ratios, highlighting their field emission properties. This study illuminates the potential of graphene fibers as FE materials, paving the way for future advancements in this domain.

Keywords

Acknowledgement

제작된 샘플은 한양 LINC+ 분석장비센터의 XPS 및 Raman 장비를 사용하여 분석되었다. 본 연구는 한국연구재단의 지원(과제번호: 2022M3C1C5A01097673)을 받아 수행된 기초연구사업임.

References

  1. C.-K. Huang, Y. Ou, Y. Bie, Q. Zhao, and D. Yu, "Well-aligned Graphene Arrays for Field Emission Displays", Appl. Phys. Lett., 2011, 98, 263104.
  2. C. Li, X. Zhou, F. Zhai, Z. Li, F. Yao, R. Qiao, K. Chen, M. T. Cole, D. Yu, and Z. Sun, "Carbon Nanotubes as an Ultrafast Emitter with a Narrow Energy Spread at Optical Frequency", Adv. Mater., 2017, 29, 1701580.
  3. L. Chen, H. He, H. Yu, Y. Cao, D. Lei, Q. Menggen, C. Wu, and L. Hu, "Electron Field Emission Characteristics of Graphene/Carbon Nanotubes Hybrid Field Emitter", J. Alloys Compd., 2014, 610, 659-664. https://doi.org/10.1016/j.jallcom.2014.04.202
  4. L. Dai, D. W. Chang, J. B. Baek, and W. Lu, "Carbon Nanomaterials for Advanced Energy Conversion and Storage", Small, 2012, 8, 1130-1166. https://doi.org/10.1002/smll.201101594
  5. W. A. De Heer, A. Chatelain, and D. Ugarte, "A Carbon Nanotube Field-emission Electron Source", Science, 1995, 270, 1179-1180. https://doi.org/10.1126/science.270.5239.1179
  6. I. Kunadian, R. Andrews, D. Qian, and M. P. Menguc, "Growth Kinetics of MWCNTs Synthesized by a Continuous-feed CVD Method", Carbon, 2009, 47, 384-395. https://doi.org/10.1016/j.carbon.2008.10.022
  7. T. Tan, H. Sim, S. P. Lau, H. Yang, M. Tanemura, and J. Tanaka, "X-ray Generation Using Carbon-nanofiber-based Flexible Field Emitters", Appl. Phys. Lett., 2006, 88, 10.
  8. J. Zhang, J. Tang, G. Yang, Q. Qiu, L. C. Qin, and O. Zhou, "Efficient Fabrication of Carbon Nanotube Point Electron Sources by Dielectrophoresis", Adv. Mater., 2004, 16, 1219-1222. https://doi.org/10.1002/adma.200400124
  9. A. K. Geim, "Graphene: Status and Prospects", Science, 2009, 324, 1530-1534. https://doi.org/10.1126/science.1158877
  10. Y. Cheng, R. Wang, J. Sun, and L. Gao, "A Stretchable and Highly Sensitive Graphene-based Fiber for Sensing Tensile Strain, Bending, and Torsion", Adv. Mater., 2015, 27, 7365-7371. https://doi.org/10.1002/adma.201503558
  11. J. N. Dash and R. Jha, "Graphene-based Birefringent Photonic Crystal Fiber Sensor Using Surface Plasmon Resonance", IEEE Photon. Technol. Lett., 2014, 26, 1092-1095. https://doi.org/10.1109/LPT.2014.2315233
  12. W. Eom, E. Lee, S. H. Lee, T. H. Sung, A. J. Clancy, W. J. Lee, and T. H. Han, "Carbon Nanotube-reduced Graphene Oxide Fiber with High Torsional Strength from Rheological Hierarchy Control", Nat. Commun., 2021, 12, 396.
  13. W. Eom, S. H. Lee, H. Shin, W. Jeong, K. H. Koh, and T. H. Han, "Microstructure-controlled Polyacrylonitrile/Graphene Fibers Over 1 Gigapascal Strength", ACS Nano, 2021, 15, 13055-13064. https://doi.org/10.1021/acsnano.1c02155
  14. D. Li, M. B. Muller, S. Gilje, R. B. Kaner, and G. G. Wallace, "Processable Aqueous Dispersions of Graphene Nanosheets", Nat. Nanotechnol., 2008, 3, 101-105. https://doi.org/10.1038/nnano.2007.451
  15. Z. Xu and C. Gao, "Graphene Chiral Liquid Crystals and Macroscopic Assembled Fibres", Nat. Commun., 2011, 2, 571.
  16. H. Park, R. B. Ambade, S. H. Noh, W. Eom, K. H. Koh, S. B. Ambade, W. J. Lee, S. H. Kim, and T. H. Han, "Porous Graphene-carbon Nanotube Scaffolds for Fiber Supercapacitors", Appl. Mater. Interfaces, 2019, 11, 9011-9022. https://doi.org/10.1021/acsami.8b17908
  17. C. Casiraghi, A. Hartschuh, H. Qian, S. Piscanec, C. Georgi, A. Fasoli, K. Novoselov, D. Basko, and A. Ferrari, "Raman Spectroscopy of Graphene Edges", Nano Lett., 2009, 9, 1433-1441. https://doi.org/10.1021/nl8032697
  18. M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, "Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy", Nano Lett., 2010, 10, 751-758. https://doi.org/10.1021/nl904286r
  19. H. Park, K. Lee, Y. Kim, S. Ambade, S. Noh, W. Eom, J. Hwang, W. Lee, J. Huang, and T. Han, "Dynamic Assembly of Liquid Crystalline Graphene Oxide Gel Fibers for Ion Transport", Sci. Adv., 2018, 4, eaau2104.
  20. W. Eom, H. Park, S. H. Noh, K. H. Koh, K. Lee, W. J. Lee, and T. H. Han, "Strengthening and Stiffening Graphene Oxide Fiber with Trivalent Metal Ion Binders", Part. Part. Syst. Charact., 2017, 34, 1600401.
  21. S. H. Noh, W. Eom, W. J. Lee, H. Park, S. B. Ambade, S. O. Kim, and T. H. Han, "Joule Heating-induced sp2-restoration in Graphene Fibers", Carbon, 2019, 142, 230-237. https://doi.org/10.1016/j.carbon.2018.10.041
  22. R. Rozada, J. I. Paredes, S. Villar-Rodil, A. Martinez-Alonso, and J. M. Tascon, "Towards Full Repair of Defects in Reduced Graphene Oxide Films by Two-step Graphitization", Nano Res., 2013, 6, 216-233. https://doi.org/10.1007/s12274-013-0298-6
  23. J. S. Han, S. H. Lee, and C. J. Lee, "High-Performance Field Electron Emitters Fabricated Using a Free-Standing Carbon Nanotube Film", IEEE J. Electron Devices Soc., 2022, 10, 402-407. https://doi.org/10.1109/JEDS.2022.3178742
  24. O. Floweri, J. Kim, Y. Seo, J. Y. Park, and N. Lee, "Characterisation of Carbon Nanotube Pastes for Field Emission Using Their Sheet Resistances", Appl. Surf. Sci., 2015, 353, 54-62. https://doi.org/10.1016/j.apsusc.2015.05.188
  25. T. Y. Posos, S. B. Fairchild, J. Park, and S. V. Baryshev, "Field Emission Microscopy of Carbon Nanotube Fibers: Evaluating and Interpreting Spatial Emission", J. Vac. Sci. Technol. B, 2020, 38, 024006.