DOI QR코드

DOI QR Code

판구조론적 역사를 고려한 해외 대규모 이산화탄소 지중저장소 탄성파 해석 결과 분석

Analysis on Seismic Interpretation for Overseas Large-scale CO2 Storage Considering Geological History Related to Plate Tectonics

  • 이영주 (전북대학교 자원에너지공학과) ;
  • 강하연 (전북대학교 자원에너지공학과) ;
  • 박윤곤 (전북대학교 자원에너지공학과) ;
  • 한아름 (한국 CCUS 추진단) ;
  • 이재영 (한국 CCUS 추진단) ;
  • 오주원 (전북대학교 자원에너지공학과)
  • Young-Ju Lee (Department of Mineral Resources and Energy Engineering) ;
  • Ha-Yeon Kang (Department of Mineral Resources and Energy Engineering) ;
  • Yun-Gon Park (Department of Mineral Resources and Energy Engineering) ;
  • Ah-Reum Han (Korea CCUS Association) ;
  • Jae-Young Lee (Korea CCUS Association) ;
  • Ju-Won Oh (Department of Mineral Resources and Energy Engineering)
  • 투고 : 2023.07.30
  • 심사 : 2023.12.19
  • 발행 : 2024.02.29

초록

2050 탄소중립을 달성하기 위해 현재 전 세계적으로 이산화탄소 포집·활용·저장(Carbon Dioxide Capture Utilization and Storage, CCUS) 기술이 주목받으면서, 북미, 북해, 중동, 오세아니아 지역을 중심으로 다양한 대규모 이산화탄소 포집·저장(Carbon Dioxide Capture and Storage, CCS) 사업이 활발하게 추진되고 있다. 2050년까지 연간 3,000만 톤급의 국내 저장소 확보가 중요한 국내 상황을 고려하여, 판구조론적 관점에서 해외 대규모 이산화탄소 저장소의 형성 과정과 지질구조 특징을 분석하고자 한다. 이를 위하여 해외 대규모 CCS 프로젝트를 개발 중인 북미, 북해, 오세아니아, 중동 지역의 이산화탄소 저장소의 형성 과정을 GPlates 프로그램을 활용하여 판구조론적인 관점으로 해석하였다. 또한, 각 지역을 대표하는 지중저장소에 대한 탄성파 영상화 결과를 지질구조적 측면에서 해석함으로써, 향후 국내 대규모 저장소 탐사에 활용할 수 있다.

Carbon dioxide capture utilization and storage (CCUS) techniques have received significant global attention as they are part of efforts to achieve carbon neutrality by 2050. Large-scale carbon dioxide capture and storage (CCS) projects are being actively pursued in North America, the North Sea, the Middle East, and Oceania. Considering the current situation in South Korea, identifying large-scale CCS sites that can secure an annual domestic carbon storage capacity of 30 million tons by 2050 is crucial Therefore, this study analyzed the formation process and geological characteristics of overseas large-scale CCS projects in terms of plate tectonics. We utilized the GPlates program to interpret the formation processes of large-scale CCS projects in North America, the North Sea, Middle East, and Oceania from the perspective of plate tectonics. Additionally, we investigated the geological structure of the CO2 storage layer and interpreted seismic imaging results obtained from each CCS site. This study will help identify a domestic large-scale CCS site.

키워드

과제정보

본 연구는 2022년도 정부(교육부, 산업통상자원부)의 재원으로 K-CCUS 추진단의 지원을 받아 수행된 연구입니다(KCCUS20220001, 온실가스감축 혁신인재양성사업). 또한 2023년도 한국에너지기술평가원의 지원을 받아 수행한 연구입니다(20225B10300020, 호주 CCUS 프로젝트 참여를 통한 국경 통과 CCUS 사업 모델 및 해양지중 CO2 모니터링 기술 개발).

참고문헌

  1. Abul Khair, H., Cooke, D., and Hand, M., 2015, Seismic mapping and geomechanical analyses of faults within deep hot granites, a workflow for enhanced geothermal system projects, Geothermics, 53, 46-56. https://doi.org/10.1016/j.geothermics.2014.04.007
  2. Albertus, R., Anto, M., Afsa, S., Insha, S., and Darrell, P., 2022, Module-1 Technoscientific Basics of Oil and Gas Industry in Qatar, https://www.historyofoilgasinqatar.com/module-1 (July 28, 2023, Accessed)
  3. Abul Khair, H., Cooke, D., King, R., Hand, M., Tingay, M., 2012, Preliminary workflow for subsurface fracture mapping using 3D seismic surveys: A case study from the Cooper Basin, South Australia. Transactions - Geothermal Resources Council. 36, 339-349. https://hdl.handle.net/2440/77976
  4. Alfadala, H. E., and El-Halwagi, M. M., 2017, Qatar's Chemical Industry: Monetizing Natural Gas, Chemical Engineering Progress, 113(2), 38-41. https://www.aiche.org/resources/publications/cep/2017/february/qatars-chemical-industry-monetizing-natural-gas
  5. Brydie, J., Jones, D., Jones, J. P., Perkins, E., Rock, L., and Taylor, E., 2014, Assessment of Baseline Groundwater Physical and Geochemical Properties for the Quest Carbon Capture and Storage Project, Alberta, Canada, Energy Procedia, 63, 4010-4018. https://doi.org/10.1016/j.egypro.2014.11.431
  6. Beach Energy, 2021, Otway Offshore Project 2020-2023 Program. https://www.beachenergy.com.au/wp-content/uploads/2021/06/GD21-0111_OtwayOffshoreProject_Detailed.pdf
  7. Bill, S., 2012, https://usea.org/event/shell-briefing-quest-ccs-project (September 27, 2023, Accessed).
  8. Bay, P., 2021, A market feasibility analysis of the carbon capture utilization and storage landscape in China power sector for foreign firms. https://dspace.mit.edu/bitstream/handle/1721.1/139544/Bay-Phebebay-msms-sloan-2021-thesis.pdf?sequence=1&isAllowed=y
  9. Balgord, E. A., Yonkee, W. A., Wells, M. L., Gentry, A., and Laskowski, A. K., 2021, Arc tempos, tectonic styles, and sedimentation patterns during evolution of the North American Cordillera: Constraints from the retroarc detrital zircon archive, Earth-Science Reviews, 216, 103557. https://doi.org/10.1016/j.earscirev.2021.103557
  10. Barton, G., 2010, https://austhrutime.com/cooper_basin_impact_crater.htm (July 28, 2023, Accessed).
  11. Bourne, S., Crouch, S., and Smith, M., 2014, A risk-based framework for measurement, monitoring and verification of the Quest CCS Project, Alberta, Canada, International Journal of Greenhouse Gas Control, 26, 109-126. https://doi.org/10.1016/j.ijggc.2014.04.026
  12. Barranco, I., Mahon, E., and Sixsmith, P., 2013, Stratigraphic interpretation and reservoir modeling of the Barrow Group below Barrow Island, Proceedings of the Petroleum Exploration Society of Australia Symposium, 1-23. https://archives.datapages.com/data/petroleum-exploration-society-of-australia/conferences/043/043001/pdfs/6.htm
  13. Cook, A. J., Mekellar, J., and Draper, J. J., 2013, Eromanga Basin. In Jell, P. J., Geology of Queensland. Geological Survey of Queensland, 523-533. https://www.researchgate.net/publication/325053240_COOK_AJ_McKELLAR_JL_DRAPER_JJ_2013_Eromanga_Basin_In_Jell_PJ_Geology_of_Queensland_Geological_Survey_of_Queensland_523-533
  14. Cioppa, M. T., 2003, Magnetic evidence for the nature and timing of fluid migration in the Watrous Formation, Williston Basin, Canada: a preliminary study, Journal of Geochemical Exploration, 78-79, 349-354. https://doi.org/10.1016/S0375-6742(03)00033-5
  15. Cook, P. J., 2009, Demonstration and Deployment of Carbon Dioxide Capture and Storage in Australia. Energy Procedia. 1, 3859-3866. https://doi.org/10.1016/j.egypro.2009.02.188
  16. Chalmin, A., 2022, The current state of ccs in the U.S-Resume after 100 years of CO2 capture and 25 years of extensive federal funding. https://www.geoengineeringmonitor.org/2022/12/the-current-state-of-ccs-in-the-u-s-resume-after-100-years-of-co2-capture-and-25-years-of-extensive-federal-funding/
  17. Ebrahimian, B., Movahed, V., and Nazari, A., 2014, Soil characterisation of South Pars field, Persian Gulf., 1, 96-107. doi: 10.1680/envgeo.13.00011
  18. Entropy, 2023, https://entropyinc.com/glacier/ (July 27, 2023, Accessed).
  19. Eyles, N., and Young, G. M., 1994, Earth's Glacial Record: Geodynamic controls on glaciation in Earth history. https://www.semanticscholar.org/paper/Earth%27s-Glacial-Record%3A-Geodynamic-controls-on-in-Eyles-Young/14e93bf76ac215721988f2a714f917daf79482e6
  20. Earle, S., 2019, Physical Geology - 2nd Edition. Victoria, B.C.: BCcampus. Retrieved from https://opentextbc.ca/physicalgeology2ed/
  21. Equinor, 2022, Northern Lights Project Concept report. https://ccsnorway.com/app/uploads/sites/6/2020/05/Northern-Lights-Project-Concept-report.pdf
  22. Furre, A.-K., Eiken, O., Alnes, H., Vevatne, J. N., and Kiaer, A. F., 2017, 20 Years of Monitoring CO2-injection at Sleipner, Energy Procedia, 114, 3916-3926. https://doi.org/10.1016/j.egypro.2017.03.1523
  23. Flett, M., Brantjes, J., Gurton, R., McKenna, J., Tankersley, T., and Trupp, M., 2009, Subsurface development of CO2 disposal for the Gorgon Project, Energy Procedia, 1(1), 3031-3038. https://doi.org/10.1016/j.egypro.2009.02.081
  24. Glennie, K. W., 1998, Petroleum Geology of the North Sea, Basic concepts and recent advances (4th ed.), Blackwell Science Ltd, New Jersey, United States. https://www.wiley.com/en-us/Petroleum+Geology+of+the+North+Sea%3A+Basic+Concepts+and+Recent+Advances%2C+4th+Edition-p-9780632038459
  25. Government of South Australia, 2023, https://www.energymining.sa.gov.au/industry/energy-resources/geology-and-prospectivity/mesozoic-basins/eromanga-basin (July 26, 2023, Accessed).
  26. Global CCS Institute, 2022, Global status of ccs 2022 report. https://www.globalccsinstitute.com/resources/global-status-of-ccs-2022/
  27. Global CCS Institute, 2023, https://www.globalccsinstitute.com/news-media/latest-news/denmarks-project-greensand-begins-groundbreaking-cross-border-co2-injection/ (July 27, 2023, Accessed).
  28. Global CCS Institute, 2020, Global Statis of CCS 2020 report. https://www.globalccsinstitute.com/resources/publications-reports-research/global-status-of-ccs-report-2020/
  29. Global CCS Institute, 2019, https://www.globalccsinstitute.com/news-media/latest-news/new-wave-of-ccs-ambition-ten-large-scale-projects-announced/ (July 27, 2023, Accessed).
  30. Geoscience Australia, 2023, https://www.ga.gov.au/scientific-topics/energy/province-sedimentary-basin-geology/petroleum/acreagerelease/northerncarnarvon (July 28, 2023, Accessed).
  31. Harvey, S., Hopkins, J., Kuehl, H., O'Brien, S., and Mateeva, A., 2022, Quset CCS Facility: Time-Lapse Seismic Campaigns, International Journal of Greenhouse Gas Control, 117, 103665. https://doi.org/10.1016/j.ijggc.2022.103665
  32. Hearty, D. J., Ellis, G. K., and Webster, K. A., 2002, Geological history of the western Barrow Sub-basin: implications for hydrocarbon entrapment at Woollybutt and surrounding oil and gas fields, The Sedimentary Basins of Western Australia, 3, 577-598. https://archives.datapages.com/data/petroleum-exploration-society-of-australia/conferences/014/014001/pdfs/577.html
  33. Hansen, O., Gilding, D., Nazarian, B., Osdal, B., Ringrose, P., Kristoffersen, J.-B., Eiken, O., and Hansen, H., 2013, Snohvit: The History of Injecting and Storing 1 Mt CO2 in the Fluvial Tubaen Fm, Energy Procedia, 37, 3565-3573. doi: 10.1016/j.egypro.2013.06.249
  34. Hovorka, S. D., 2013, Three-Million-Metric-Ton-Monitored Injection at the Secarb Cranfield Project-Project Update, Energy Procedia, 37, 6412-6423. https://doi.org/10.1016/j.egypro.2013.06.571
  35. Heidug, W., Lipponen, J., McCoy, S., and Benoit, P., 2015, Storing CO2 through Enhanced Oil Recovery, Combing EOR with CO2 stroage(EOR+) for profit, International Eneargy Agency. https://iea.blob.core.windows.net/assets/bf99f0f1-f4e2-43d8-b123-309c1af66555/Storing_CO2_through_Enhanced_Oil_Recovery.pdf
  36. Kramer, L., McKirdy, D., Arouri, K., Schwark, L., and Leythaeuser, D., 2004, Constraints on the hydrocarbon charge history of sandstone reservoirs in the Strzelecki Field, Eromanga Basin, South Australia, PESA Eastern Australasian Basins Symposium II, Adelaide, Proceedings Volume, 589-602. https://www.researchgate.net/publication/260963139_Constraints_on_the_hydrocarbon_charge_history_of_sandstone_reservoirs_in_the_Strzelecki_Field_Eromanga_Basin_South_Australia
  37. Khan, S., Khulief, Y. A., and Al-Shuhail, A. A., 2018, Alleviation of pore pressure buildup and ground uplift during carbon dioxide injection into Ghawar Arab-D carbonate naturally fractured reservoir. Environmental Earth Sciences, 77, 449. doi: 10.1007/s12665-018-7610-4
  38. Setiyono, K., Gallo, S., Boulange, C., Bruere, F., Moreau, F., Rondeleux, B., and Snow, J., 2015, Near Surface Velocity Model of Dukhan Field from Multi-physics Survey to Enhance PSDM Seismic Imaging, International Petroleum Technology Conference 2015. https://doi.org/10.2523/IPTC-18293-MS
  39. Lee, S., Lee, M., Jeon, W., Son, M., and Jung, S. P., 2022, Current Status and Perspectives of Carbon Capture and Storage, Journal of Korean Society of Environmental Engineers, 44(12), 652-664. (In Korean with English abstract) doi: https://doi.org/10.4491/KSEE.2022.44.12.652
  40. Liu, H., Tellez, B. G., Atallah, T., and Barghouty, M., 2012, The role of CO2 capture and storage in Saudi Arabia's energy future, International Journal of Greenhouse Gas Control, 11, 163-171. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2326038 https://doi.org/10.1016/j.ijggc.2012.08.008
  41. Muller, R. D., Cannon, J., Qin, X., Watson, R. J., Gurnis, M., Williams, S., Pfaffelmoser, T., Seton, M., Russell, S. H. J. and Zahirovic, S., 2018, GPlates: Building a virtual Earth through deep time. Geochemistry, Geophysics, Geosystems, 19(7), 2243-2261. doi: 10.1029/2018GC007584
  42. Ma, J., Li, L., Wang, H., Du, Y., Ma, J., Zhang, X., and Wang, Z., 2022, Carbon Capture and Storage: History and the Road Ahead, Engineering, 14, 33-43. https://doi.org/10.1016/j.eng.2021.11.024
  43. Metcalfe, R., Thatcher, K., Towler, G., Paulley, A., and Eng, J., 2017, Sub-surface Risk Assessment for the Endurance CO2 Store of the White Rose Project, UK, Energy Procedia, 114, 4313-4320. https://doi.org/10.1016/j.egypro.2017.03.1578
  44. NORCE Energy, 2021, Technical review and recommendations Porthos CO2-storage permit application. https://www.sodm.nl/binaries/staatstoezicht-op-de-mijnen/documenten/brieven/2021/12/17/adviezen-sodm-co2-opslagvergunningen-porthos/Bijlage+3+NORCE_assessment_Porthos_storage_permit_final.pdf
  45. Neele, F., Wildenborg, T., Geel, K., Loeve, D., Peters, L., Kahrobaei, S., Cadela, T., Koenen, M., Hopmans, P., van der Valk, K., Orlic, B., and Vandeweijer, V., 2020, CO2 storage feasibility in the P18-2 depleted gas field, TNO report. https://www.commissiemer.nl/projectdocumenten/00007538.pdf
  46. Nasir, U., Saeed, M. A., and Yousif, S. M., 2021, Environmental Impact Assessment of Heavy Metals in Surface Disposed Drilling Waste. Journal of Geoscience and Environment Protection, 9(9), 227-238. doi: 10.4236/gep.2021.99012
  47. O'Brien, S., Halladay, A., and Bacci, V. O., 2018, Quest CCS facility: Microseismic Observations, 14th International Conference on Greenhouse Gas Control Technologies (GHGT14) https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3366114
  48. Preston, C., Whittaker, S., Rostron, B., Chalaturnyk, R., White, D., Hawkes, C., Johnson, J. W., Wilkinson, A., and Sacuta, N., 2009, IEA GHG Weyburn-Midale CO2 monitoring and storage project-moving forward with the Final Phase, Energy Procedia, 1(1), 1743-1750. https://doi.org/10.1016/j.egypro.2009.01.228
  49. Patruno, S., Kombrink, H., and Archer, S. G., 2022. Cross-border stratigraphy of the Northern, Central and Southern North Sea: a comparative tectono-stratigraphic mega sequence synthesis. Geological Society London. doi: 10.1144/SP494-2020-228
  50. Pollastro, R. M., 2003, Total Petroleum Systems of the Paleozoic and Jurassic, Greater Ghawar Uplift and Adjoining Provinces of Central Saudi Arabia and Northern Arabian-Persian Gulf, United States Geological Survey. https://doi.org/10.3133/b2202H
  51. Ringrose, P. S., 2018, The CCS hub in Norway: some insights from 22 years of saline aquifer storage, Energy Procedia, 146, 166-172. https://doi.org/10.1016/j.egypro.2018.07.021
  52. Rahman, M. J., Fawad, M., and Mondol, N. H., 2022, Influence of Rock Properties on Structural Failure Probability-Caprock Shale Examples from the Horda Platform, Offshore Norway, Energies, 15(24), 9598. https://doi.org/10.3390/en15249598
  53. Rock, L., O'Brien, S., Tessarolo, S., Duer, J., Bacci, V. O., Hirst, B., Randell, D., Helmy, M., Blackmore, J., Duong, C., Halladay, A., Smith, N., Dixit, T., Kassam, S., and Yaychuk, M., 2017, The Quest CCS Project: 1st Year Review Post Start of Injection, Energy Procedia, 114, 5320-5328. doi: 10.1016/j.egypro.2017.03.1654
  54. Roth, J., and Littke, R., 2022, Down under and under Cover - The tectonic and thermal history of the cooper and central Eromanga basins (Central Eastern Australia), Geosciences, 12(3), 117. doi: 10.3390/geosciences12030117
  55. Reeves, S. R., 2008, Demonstration of a Novel, Integrated, MultiScale Procedure for High-Resolution 3D Reservoir Characterization and Improved CO2-EOR/Sequestration Management, SACROC Unit. https://netl.doe.gov/node/3860
  56. Steve, Whittaker, 2015, CO2 EOR and Carbon Storage With Case Examples form Weyburn Field, CCOP CCS-M Workshop C2W1, Kuala Lumpur, Malaysia, June 3. http://www.ccop.or.th/ccsm/data/23/docs/CCOP_Whittaker_EOR_June%203_Final.pdf
  57. Sundal, A., Nystuen, J. P., Rorvik, K.-L., Dypvik, H., and Aagaard, P., 2016, The Lower Jurassic Johansen Formation, Northern North Sea - Depositional model and reservoir characterization for CO2 storage. Marine and Petroleum Geology, 77, 1376-1401. https://doi.org/10.1016/j.marpetgeo.2016.01.021
  58. Santos, 2020, Moomba carbon capture and storage injection trial successful. https://www.santos.com/news/moomba-carbon-capture-and-storage-injection-trial-successful/
  59. Scotese, C. R., 2016, PALEOMAP PaleoAtlas for GPlates and the PaleoData Plotter Program, PALEOMAP Project, http://www.earthbyte.org/paleomap-paleoatlas-for-gplates
  60. Sick, H., and Manderson, D., 2016, CarbonNet Knowledge Product-Development of a CO2 specification for a CCS hub network, Parsons Brinckerhoff. https://www.globalccsinstitute.com/resources/publications-reports-research/the-carbonnet-project-development-of-a-co2-specification-for-a-ccs-hub-network/
  61. Trupp, M., Frontczak, J., and Torkington, J., 2013, The Gorgon CO2 Injection Project - 2012 Update, Energy Procedia., 37, 6237-6247. https://doi.org/10.1016/j.egypro.2013.06.552
  62. Tanaka, Y., Sawada, Y., Tanase, D., Tanaka, J., Shiomi, S., and Kasukawa, T., 2017, Tomakomai CCS Demonstration Project of Japan, CO2 Injection in Process, Energy Procedia, 114, 5836-5846. https://doi.org/10.1016/j.egypro.2017.03.1721
  63. Tobola, T., and Kukialka, P., 2020, The Lotsberg Salt Formation in Central Alberta (Canada)-Petrology, Geochemistry, and Fluid Inclusions, Minerals, 10(10), 868. https://doi.org/10.3390/min10100868
  64. White, D. J., Burrowes, G., Davis, T., Hajnal, Z., Hirsche, K., Hutcheon, I., Majer, E., Rostron, B., and Whittaker, S., 2004, Greenhouse gas sequestration in abandoned oil reservoirs: the International Energy Agency Weyburn Pilot Project. GSA Today, 14(7), 4-10. https://ui.adsabs.harvard.edu/abs/2004GSAT...14g...4W/abstract https://doi.org/10.1130/1052-5173(2004)014<004:GGSIAO>2.0.CO;2