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F -CONTRACTION IN PARTIALLY ORDERED b-METRIC

LIKE SPACES

Om Prakash Chauhan a, ∗, Vishal Joshi b and Saurabh Singh c

Abstract. In this article, we utilize the concepts of hybrid rational Geraghty type
generalized F -contraction and to prove some fixed point results for such mappings
are in the perspective of partially ordered b-metric like space. Some innovative
examples are also presented which substantiate the validity of obtained results. The
example is also authenticated with the help of graphical representations.

1. Introduction

Numerous extensions and variations of the metric space concept have been ex-

plored. Bakhtin [8] introduced the notion of a b-metric space, and subsequently,

Czerwik ([11], [12]) extensively utilized the concept of b-metric spaces.The concept

of partial metric spaces was introduced by Matthews [16], who replaced the con-

ventional metric with a partial metric as part of the investigation into denotational

semantics for data flow networks. Notably, this approach exhibits the intriguing

property that the self-distance of any point within the space need not be zero.

Matthews [16] also obtained the partial metric version of Banach contraction theo-

rem. Subsequently, many authors studied partial metric spaces and their topological

properties and obtained a number of fixed point theorems [3, 4, 6, 7, 13, 18, 19]. In

2012, Amini-Harandi [5] introduced a distinct generalization of partial metric spaces

known as metric-like spaces. Building upon this, Alghamdi et al. [2] introduced b-

metric-like spaces, which are purported to extend partial metric spaces, b-metric

spaces, and metric-like spaces. Concurrently, Wardowski [21] introduced the novel

concept of an F -contraction, which constitutes a broader framework than the clas-

sical Banach contraction principle, leading to new fixed point results. Expanding
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on this, Abbas et al. [1] further generalized the notion of F -contraction and estab-

lished a collection of fixed point and common fixed point theorems. More recently,

Secelean et al. [20] outlined a comprehensive set of functions by incorporating con-

dition (F2
′

) in lieu of the conventional condition (F2) within the definition of the

F -contraction, as introduced by Wardowski [21]. In a recent advancement, Piri et

al. [17] enhanced the findings of Secelean et al. [20] by replacing condition (F3
′

)

with the original condition (F3).

The forthcoming sections will make use of elementary definitions and essential out-

comes, which are expounded upon in this section.

Definition 1.1 ([11]). Let X be a nonempty set and s ≥ 1 be a given real number.

A function d : X×X → [0,∞) is called a b-metric if for all x, y, z ∈ X the following

conditions are satisfied:

(b1) d(x, y) = 0 iff x = y;

(b2) d(x, y) = d(y, x);

(b3) d(x, y) ≤ s[d(x, z) + d(z, y)].

The pair (X, d) is called a b-metric space. The number s ≥ 1 is called the coefficient

of (X, d).

Definition 1.2 ([16]). A partial metric on a nonempty set X is a function p :

X ×X → [0,∞) such that for all x, y, z ∈ X,

(p1) x = y iff p(x, x) = p(x, y) = p(y, y);

(p2) p(x, x) ≤ p(x, y);

(p3) p(x, y) = p(y, x);

(p4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

A partial metric space is a pair (X, p) such that X is a nonempty set and p is a

partial metric on X.

Definition 1.3 ([2]). Let X be a nonempty set and s ≥ 1 be a given real number.

A function σb : X × X → [0,∞) is called a b-metric-like if for all x, y, z ∈ X the

following conditions are satisfied:

(σb1) σb(x, y) = 0 implies x = y;

(σb2) σb(x, y) = σb(y, x);

(σb3) σb(x, y) ≤ s[σb(x, z) + σb(z, y)].

The pair (X,σb) is called a b-metric-like space. The number s ≥ 1 is called the

coefficient of (X,σb).
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Example 1.4 ([2]). Let X = R
+ and the mapping σb : X ×X → R

+ be defined by

σb(x, y) = [max{x, y}]2,

for all x, y ∈ X. Then (X,σb) is a b-metric-like space with the coefficient s = 2 > 1,

but it is neither a b-metric nor a metric-like space.

Remark 1.5. The class of b-metric-like spaces (X,σb) encompasses a broader scope

than that of metric-like spaces, as a metric-like space becomes a distinct instance

of a b-metric-like space (X,σb) when s = 1. Similarly, the category of b-metric-like

spaces (X,σb) extends beyond that of b-metric spaces, given that a b-metric space

emerges as a specific manifestation of a b-metric-like space (X,σb) in cases where

the self-distance σb(x, x) = 0.

Each b-metric-like σb on X generalizes a topology τσb
on X whose base is the

family of open σb-balls B − σb(x, ǫ) = {y ∈ X : |σb(x, y) − σb(x, x)| < ǫ} for all

x ∈ X and ǫ > 0.

Definition 1.6 ([2]). A b-metric-like space (X,σb) is said to be σb-complete if every

σb-Cauchy sequence {xn} in X, σb-converges to a point x ∈ X, such that

σb(x, x) = lim
n,m→∞

σb(xn, xm) = lim
n→∞

σb(x, xn).

Lemma 1.7 ([2]). Let {yn} be a sequence in a b-metric like space (X,σb) such that

σb(yn, yn+1) ≤ λσb(yn−1, yn)

for some λ, 0 < λ < 1
s
and each n ∈ N . Then {yn} is a Cauchy sequence in X

and lim
n,m→∞

σb(yn, ym) = 0.

Remark 1.8 ([2]). Let (X,σb) be a b-metric-like space with constant s ≥ 1. Then

it is clear that

σsb(x, y) = |2σb(x, y) − σb(x, x)− σb(y, y)|

satisfies σsb(x, x) = 0, for all x ∈ X. Then σsb(x, y) is considered to be a b-metric

space.

Remark 1.9 ([10]). Let (X,σb) be a b-metric-like space and let T : X → X

be a continuous mapping. Then lim
n→∞

σb(xn, x) = σb(x, x) ⇒ lim
n→∞

σb(Tx, Txn) =

σb(x, x).

Definition 1.10 ([15]). If a nonempty set X is equipped with a partial order �

such that (X,σ) is a metric-like space, then the (X,σ,�) is called a partially ordered

metric-like space.
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The proof of following lemma is similar as for the metric case.

Lemma 1.11 ([15]). Let (X,σ) be a metric-like space and {xn} be a sequence in X.

If the sequence {xn} converges to some x ∈ X with σ(x, x) = 0 then lim
n→∞

(xn, y) =

σ(x, y) for all x ∈ X.

Definition 1.12 ([21]). Let F : R+ → R be a mapping satisfying:

(F1) F is strictly increasing, that is, for α, β ∈ R
+ such that α < β, F (α) < F (β);

(F2) for each sequence {αn} of positive numbers lim
n→∞

αn = 0 iff lim
n→∞

F (αn) = −∞;

(F3) there exists k ∈ (0, 1) such that lim
α→0+

αkF (α) = 0.

Denote the set of all functions satisfying (F1)-(F3) by ℑ. In [20], Secelean et al.

changed the condition (F2) by an equivalent but a more simple condition (F2
′

).

(F2
′

) inf F = −∞,

or, also by

(F2
′
′

) there exists a sequence {αn}
∞
n=1 of positive real numbers such that lim

n→∞
F (αn) =

−∞.

Recently, Piri et al. [17] used the following condition (F3
′

) instead of (F3).

(F3
′

) F is continuous on (0,∞).

In our subsequent discussion, condition (F2
′

) is dropped out. Thus we utilize the

functions F : R+ → R which satisfy (F1) and (F3
′

). Class of all such functions

satisfying (F1), and (F3
′

) is denoted by ∆F .

Wardowski in [21] introduced the F -contraction as follows:

Definition 1.13. Let (X, ρ) be a metric space. A mapping T : X → X; is said

to be an F -contraction if there exists F ∈ F and τ > 0 such that, for all x, y ∈

X, ρ(Tx, Ty) > 0 we have

τ + F (ρ(Tx, Ty)) ≤ F (ρ(x, y)).

Definition 1.14 ([14]). Let Θ denotes the class of the functions θ : [0,+∞) → [0, 1)

which satisfy the condition θ(tn) → 1 ⇒ tn → 0.

Definition 1.15 ([9]). Let X be a non-empty set,T : X → X and α, β : X ×X →

[0,∞). We say that T is an (α, β)-admissible if α(x, y) ≥ 1 and β(x, y) ≥ 1 implies

α(Tx, Ty) ≥ 1 and β(Tx, Ty) ≥ 1, for all x, y ∈ X.

Let Φ be the set of functions φ : [0,∞) → [0,∞) such that

(1) φ is non-decreasing;
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(2) φ is continuous;

(3) φ(t) = 0 ⇐⇒ t = 0.

Let Ψ denote the set of all decreasing functions ψ : (0,∞) → (0,∞).

2. Main Results

In this section, we proved some results on partially ordered b metric like spaces

via Geraghty type generalized F -contraction and their consequences.

Definition 2.1. Let (X,σb,-) be a partially ordered b-metric like space. Let T :

X → X be a self-mapping. if there exist F ∈ ∆F , θ ∈ Θ, φ ∈ Φ and ψ ∈ Ψ such

that for all x, y ∈ X and s > 1 with σb(Tx, Ty) > 0,

(2.1)

F
(

s
( 1 + sσb(x, y)

1 + 1
2σb(x, Tx)

)

σb(Tx, Ty)
)

≤ θ
(

φ
(

Ms(x, y)
))

F (Ms(x, y))− ψ
(

σb(x, y)
)

,

where Ms(x, y) = max
{

σb(x, y), σb(x, Tx),
σb(x, Tx)σb(y, Ty)

1 + σb(Tx, Ty)

}

.

Theorem 2.2. Let (X,σb,-) be a complete partially ordered b-metric like space.

Let T be a self mapping on X satisfying the Geraghty type generalized F -contraction

on (X,σb,-). Then T has a unique fixed point u ∈ X, moreover σb(u, u) = 0.

Proof. Define a sequence {xn} in X by xn+1 = Txn for all n ∈ N ∪ {0}. If

xn+1 = xn for any n ∈ N, then xn is a fixed point of T . Consequently, assume that

xn+1 6= xn for all n ∈ N ∪ {0}.

Since 1+sσb(xn−1,xn)

1+ 1
2
σb(xn−1,Txn−1)

= 1+sσb(xn−1,xn)

1+ 1
2
σb(xn−1,xn)

≥ 1+σb(xn−1,xn)

1+ 1
2
σb(xn−1,Txn−1)

≥ 1.

By the Definition 2.1 with x = xn−1 and y = xn in (2.1) and due to ∆(F1), property

of θ and φ, we arrive at

F
(

σb(xn, xn+1)
)

≤F
(

sσb(Txn−1, Txn)
)

≤θ
(

φ
(

Ms(xn−1, xn)
)

)

F
(

Ms(xn−1, xn)
)

− ψ
(

σb(xn−1, xn)
)(2.2)

where

Ms(xn−1, xn) =max
{

σb(xn−1, xn), σb(xn−1, Txn−1),
σb(xn−1, Txn−1)σb(xn, Txn)

1 + σb(Txn−1, Txn)

}

=max
{

σb(xn−1, xn), σb(xn−1, xn),
σb(xn−1, xn)σb(xn, xn+1)

1 + σb(xn, xn+1)

}
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=max
{

σb(xn−1, xn),
σb(xn−1, xn)σb(xn, xn+1)

1 + σb(xn, xn+1)

}

=σb(xn−1, xn).

From (2.2) and by the definition of φ,ψ and θ, we have

F (σb(xn, xn+1)) ≤θ
(

φ
(

σb(xn−1, xn)
)

)

F
(

σb(xn−1, xn)
)

− ψ
(

σb(xn−1, xn)
)

≤ F
(

σb(xn−1, xn)
)

− ψ
(

σb(xn−1, xn)
)

.
(2.3)

Which gives

F
(

σb(xn, xn+1)
)

< F
(

σb(xn−1, xn)
)

(2.4) =⇒ σb(xn, xn+1) < σb(xn−1, xn).

Hence, {σb(xn, xn+1)} is a decreasing sequence of positive real numbers. Repeated

use of (2.3) gives

F
(

σb(xn, xn+1)
)

≤F
(

σb(xn−1, xn)
)

− ψ
(

σb(xn−1, xn)
)

≤F
(

σb(xn−2, xn−1)
)

− ψ
(

σb(xn−2, xn−1)
)

− ψ
(

σb(xn−1, xn)
)

.

As ψ is a decreasing function, we get

F
(

σb(xn, xn+1)
)

≤ F
(

σb(xn−2, xn−1)
)

− 2ψ
(

σb(xn−2, xn−1)
)

,

it follows by successive application that

(2.5) F
(

σb(xn, xn+1)
)

≤ F
(

σb(x0, x1)
)

− nψ
(

σb(x0, x1)
)

.

Since, F ∈ ∆F , letting the limit as n→ ∞ in inequality (2.5) we must have

(2.6) lim
n→∞

F
(

σb(xn, xn+1)
)

= −∞ ⇐⇒ lim
n→∞

σb(xn, xn+1) = 0.

Next, we show that {xn} is a σb-Cauchy sequence in X. If is not, then there exists

ǫ > 0 for which we can find sub-sequences xm(k) and xn(k) of {xn} where xn(k) is the

smallest index for which n(k) > m(k) > k, with

(2.7) σb(xm(k), xn(k)) ≥ ǫ,

then

(2.8) σb(xm(k), xn(k)−1) < ǫ.

Using (2.7) and (2.8), we obtain

ǫ ≤ σb(xm(k), xn(k)) ≤ sσb(xm(k), xn(k)−1) + sσb(xn(k)−1, xn(k))

< sǫ+ sσb(xn(k)−1, xn(k)).
(2.9)
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Taking the upper and lower limits as k → ∞, we conclude

(2.10) ǫ ≤ lim
k→∞

inf σb(xm(k), xn(k)) ≤ lim
k→∞

supσb(xm(k), xn(k)) ≤ sǫ

and

σb(xm(k)+1, xn(k)) ≤sσb(xm(k)+1, xm(k)) + sσb(xm(k), xn(k))

≤sσb(xm(k)+1, xm(k))+s
2σb(xm(k), xn(k)−1)+s

2σb(xn(k)−1, xn(k))

≤sσb(xm(k)+1, xm(k)) + s2ǫ+ s2σb(xn(k)−1, xn(k)).

(2.11)

With taking the upper limit as k → ∞ in (2.11), we obtain

(2.12) lim
k→∞

supσb(xm(k)+1, xn(k)) ≤ s2ǫ.

Furthermore,

(2.13) σb(xm(k)+1, xn(k)−1) ≤ sσb(xm(k)+1, xm(k)) + sσb(xm(k), xn(k)−1).

By taking the upper limit as k → ∞ in (2.13), we get

(2.14) lim
k→∞

supσb(xm(k)+1, xn(k)−1) ≤ sǫ.

On the other hand

σb(xm(k), xn(k)) ≤ sσb(xm(k), xm(k)+1) + sσb(xm(k)+1, xn(k))

≤ sσb(xm(k), xm(k)+1) + s2σb(xm(k)+1, xn(k)−1)(2.15)

+ s2σb(xn(k)−1, xn(k)).

Using (2.6) and (2.10), we acquire

(2.16)
ǫ

s2
≤ lim

k→∞
inf σb(xm(k)+1, xn(k)−1).

Moreover

(2.17) ǫ ≤ σb(xm(k), xn(k)) ≤ sσb(xm(k), xm(k)+1) + sσb(xm(k)+1, xn(k)).

With taking the upper limit as k → ∞ in (2.17), we have

(2.18)
ǫ

s
≤ lim

k→∞
supσb(xm(k)+1, xn(k)).

By using (2.2), we have

F
(

sσb(xm(k)+1, xn(k))
)

= F
(

sσb(Txm(k), Txn(k)−1)
)

(2.19)

≤θ
(

φ
(

Ms(xm(k), xn(k)−1)
)

)

F
(

Ms(xm(k), xn(k)−1)
)

−ψ
(

σb(xm(k), xn(k)−1)
)
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where

Ms(xm(k), xn(k)−1)

(2.20)

= max
{

σb(xm(k), xn(k)−1), σb(xm(k), xm(k)+1),
σb(xm(k), xm(k)+1)σb(xn(k)−1, xn(k))

1 + σb(xm(k)+1, xn(k)+1)

}

on taking the upper limit as k → ∞, from (2.6),(2.8),(2.10) and (2.14), we obtain

lim
k→∞

supMs(xm(k), xn(k)−1) = max{ǫ, 0, 0} = ǫ.(2.21)

Undoubtedly,
1+sσb(xm(k),xn(k)−1)

1+ 1
2
σb(xm(k),xm(k)+1)

≥ 1 as n→ ∞. Thus

lim
k→∞

F
(

s supσb(xm(k)+1, xn(k))
)

≤ lim
k→∞

F
(

s
1 + sσb(xm(k), xn(k)−1)

1 + 1
2σb(xm(k), xm(k)+1)

)

σb(xm(k)+1, xn(k))

therefore, we have from (2.1)

F
(

s
ǫ

s

)

≤ lim
k→∞

F
(

s supσb(Txm(k), Txn(k)−1)
)

≤ lim
k→∞

θ
(

φ
(

Ms(xm(k), xn(k)−1)
)

)

F
(

Ms(xm(k), xn(k)−1)
)

− ψ
(

σb(xm(k), xn(k)−1)
)

,

F (ǫ) ≤ lim
k→∞

θ
(

φ
(

Ms(xm(k), xn(k)−1)
)

)

F (ǫ)− ψ(ǫ)

which is a contradiction in view of the definition of θ and ψ as θ ∈ [0, 1) and

ψ ∈ (0,∞). Thus {xn} is a σb Cauchy sequence. As (X,σb,-) is complete therefore,

the sequence {xn} converges to some point u ∈ X.

Since T is continuous, u is a fixed point of T ,

u = lim
n→∞

xn+1 = lim
n→∞

Txn = Tu.

This amount to say that u is a fixed point of T .

Uniqueness: To prove the uniqueness of the fixed point u, let v be the another

fixed point of T i.e. Tv = v such that pb(u, v) > 0. From (2.1), we obtain that

F
(

σb(u, v)
)

= F
(

σb(Tu, Tv)
)

≤ F
(

sσb(Tu, Tv)
)

≤ F
(

s
1 + sσb(u, v)

1 + 1
2σb(u, Tu)

)

σb(Tu, Tv)

≤ θ
(

φ
(

Ms(u, v)
)

)

F
(

Ms(u, v)
)

− ψ
(

σb(u, v)
)

where

Ms(u, v) =max
{

σb(u, v), σb(u, Tu),
σb(u, Tu)σb(v, Tv)

1 + σb(Tu, Tv)

}

= σb(u, v).
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Therefore, using the definition of θ and ψ along with the value ofMs(u, v) the above

inequality turns into the following

F
(

σb(u, v)
)

≤ θ
(

φ
(

σb(u, v)
)

)

F
(

σb(u, v)
)

− ψ
(

(σb(u, v)
)

F
(

σb(u, v)
)

≤ F
(

σb(u, v)
)

− ψ
(

(σb(u, v)
)

is a contradiction. Thus, σb(Tu, Tv) = σb(u, v) = 0, i.e., u = v, this shows that the

fixed point is unique. This complete the proof of theorem. �

Theorem 2.3. Under the same hypothesis of Theorem 2.2 and without assuming

the continuity of T , assume that whenever {xn} is a non-decreasing sequence in X

such that xn → x ∈ X implies xn - x for all n ∈ N , then T has a fixed point u ∈ X.

Proof. Following similar arguments to those given in Theorem 2.2, we construct a

nondecreasing sequence {xn} in X such that xn → u for some u ∈ X. Using the

assumption of X, we have xn � u for every n ∈ N . Now, we show that Tu = u.

Suppose F (Tu, u) = lim
n→∞

F (Tu, xn+1) = lim
n→∞

F (Tu, Txn) > 0.

Suppose that there exist n0 ∈ N1, such that

1

2
σb(xn0 , Txn0) > sσb(xn0 , u)

and
1

2
σb(xn0+1, Txn0+1) > sσb(xn0+1, u).

Then from (2.4), it follows that

σb(xn0+1, xn0) ≤ sσb(xn0 , u)

<
1

2
σb(xn0 , Txn0) +

1

2
σb(xn0+1, Txn0+1)

=
1

2
σb(xn0 , xn0+1) +

1

2
σb(xn0+1, xn0+2)

≤
1

2
σb(xn0 , xn0+1) +

1

2
σb(xn0 , xn0+1)

= σb(xn0+1, xn0)

which is a contradiction. Hence either

1

2
σb(xn, Txn) ≤ sσb(xn, u)

and
1

2
σb(xn+1, Txn+1) ≤ sσb(xn+1, u).
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for all n ∈ N1. It is not restrictive to assume that one of these inequalities holds for

all n ∈ N1, for example

(2.22)
1

2
σb(xn, Txn) ≤ sσb(xn, u).

By (2.1) and (2.22), we have

F
(

sσb(Tu, Txn−1)
)

≤ F
(

s
1 + σb(u, xn)

1 + 1
2σb(xn, Txn)

)

σb(Tu, xn)

≤ θ
(

φ
(

Ms(u, xn)
)

)

F
(

Ms(u, xn)
)

− ψ
(

σb(u, xn)
)

,

(2.23)

where

σb(Tu, u) ≤Ms(u, xn)

= max
{

σb(u, xn), σb(Tu, u),
σb(u, Tu)σb(xn, Txn)

1 + σb(Tu, Txn)

}

= max
{

σ(u, xn), σ(Tu, u),
σb(u, Tu)σb(xn, xn+1)

1 + σb(Tu, xn+1)

}

taking limit as n→ ∞, by Definition 1.6, we obtain

σb(Tu, u) ≤ lim
n→∞

Ms(u, xn) ≤ σb(u, Tu)

⇒ Ms(u, xn) = σb(u, Tu)

therefore, letting n→ ∞ in (2.23), we get

F
(

σb(Tu, u)
)

≤ θ
(

φ
(

σb(Tu, u)
)

)

F
(

σb(Tu, u)
)

− ψ
(

σb(Tu, u)
)

,

which is a contradiction in view of F1, θ, φ and ψ. Then σ(Tu, u) = 0. Thus

Tu = u. �

Some consequences:

By choosing ψ(σb(x, y)) = τ ≥ 0 in Theorem 2.2, Berinde-Wardowiski type result is

obtained in the setting of partially ordered b-metric like spaces as follows.

Corollary 2.4. Theorem 2.2 remains true, if we replace the assumption (2.1) by

the following (besides retaining the rest of the hypotheses):

F
(

s
( 1 + sσb(x, y)

1 + 1
2σb(x, Tx)

)

σb(Tx, Ty)
)

≤ θ
(

φ
(

Ms(x, y)
)

)

F
(

Ms(x, y)
)

− τ.

Further by taking φ(t) = t in Corollary 2.4, we have the following Corollary as a

consequence of Theorem 2.2.
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Corollary 2.5. Let (X,σb) be a complete partially ordered b-metric like space with

s > 1. Let T be a continuous self mapping on X. If there exist, θ ∈ Θ, F ∈ ∆F , τ >

0, such that for all x, y ∈ X with σb(Tx, Ty) ≥ 0,

F
(

s
( 1 + sσb(x, y)

1 + 1
2σb(x, Tx)

)

σb(Tx, Ty)
)

≤ θ
(

Ms(x, y)
)

F
(

Ms(x, y)
)

− τ,

where

Ms(x, y) = max
{

σb(x, y), σb(x, Tx),
σb(x, Tx)σb(y, Ty)

1 + σb(Tx, Ty)

}

.

Then T has a unique fixed point.

Example 2.6. Let X = [0, 10] be equipped with the partial order relation � defined

by x � y ⇐⇒ x > y and the function σb : X ×X → [0,∞) is defined by

σb(x, y) = [max{x, y}]2; for all x, y ∈ X, where s = 2.

It is obvious that, (X,σb,-) is a complete partially ordered b-metric like space. Let

the mapping T : X → X is defined by Tx = 1
8x

4e
−3x
2 . Define θ : [0,∞) → [0, 1) by

θ(t) = 1
t+2 , and let φ : [0,∞) → [0,∞) be given by φ(t) = t

10 , also let ψ : (0,∞) →

(0,∞) by ψ(t) = 1
t2+1

. Let F (t) = log t for all t ∈ R
+.

We are now verifying the contractive condition (2.1) of Theorem 2.2, which requires

assessing the following cases:

Case I. If x, y ∈ [0, 1], then

L.H.S. = F
(

s
( 1 + sσb(x, y)

1 + 1
2σb(x, Tx)

)

σb(Tx, Ty)
)

= F

(

2
( 1 + 2x2

1 + 1
2x

2

)

max
{1

8
x4e

−3c
2 ,

1

8
y4e

−3x
2

}2
)

= F

(

2
( 1 + 2x2

1 + 1
2x

2

)( 1

64
x8e−3x

)

)

= log
[( 2 + x2

1 + 1
2x

2

)( 1

64
x8e−3x

)]

.

(2.24)

Clearly when x, y ∈ [0, 1]

Ms(x, y) = x2.

Then R.H.S. becomes
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R.H.S. = θ
(

φ
(

x2
))

F
(

x2
)

− ψ(x2)

= θ
(x2

10

)

(log x2)−
1

x4 + 1

=
10

x2 + 20
(log x2)−

1

x4 + 1
.

(2.25)

From the following figure it is clear that R.H.S. expression (with Violet curve) dom-

inates the L.H.S. expression (with Brown curve). This implies that (2.1) is true for

x, y ∈ [0, 1].

Figure 1. Plot of inequality for Case I

Case II. If x, y ∈ (1, 10], then

(2.26)

L.H.S. = F
(

s
( 1 + sσb(x, y)

1 + 1
2σb(x, Tx)

)

σb(Tx, Ty)
)

= log
[( 2 + x2

1 + 1
2x

2

)( 1

64
x8e−3x

)]

.

Now, Ms(x, y) =max
{

σb(x, y), σb(x, Tx),
σb(x, Tx)σb(y, Ty)

1 + σb(Tx, Ty)

}

=max
{

x2, x2,
x2y2

1 + 1
64x

2e−3x

}

=
x2y2

1 + 1
64x

2e−3x
, when x, y ∈ (1, 10].

Thus, R.H.S. =
10

x2y2

1+ 1
8
x4e−3x + 20

log
[ x2y2

1 + 1
8x

4e−3x

]

−
1

x4 + 1
.

Again, following figure shows that R.H.S. expression (with Violet curve) is superim-

posing the L.H.S. expression (with Brown curve), which authenticates our inequality.

On the basis of above two cases one can easily verify that in all other possibilities
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Figure 2. Plot of inequality for Case II.

and cases inequality (2.1) is true. Thus, all the conditions of Theorem 2.2 are ful-

filled. Then Tx has a unique fixed point as x = 0, which is demonstrated by the

following figure.

Figure 3. Fixed point of the mapping T

3. Conclusion

In this study, recognizing the concept of F -contraction, some fixed point theorems

for Geraghty type generalized F - contraction in partially ordered b-metric-like spaces

are established. The illustrative example show the high degree of reliability to other

authors to generalize and improve these results for future research.
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