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REFINEMENT OF HERMITE HADAMARD TYPE
INEQUALITIES FOR CONVEX FUNCTIONS

WITH APPLICATIONS

Muhammad Bilal a, ∗ and Asif R. Khan b

Abstract. In this study, we would like to state two refined results related to Her-
mite Hadamard type inequality for convex functions with two distinct techniques.
Hence our obtained results would be better than the results already established for
the class of convex functions. Applications to trapezoidal rule and special means
are also discussed.

“Mathematics has been called the science of tautology; that is to say,
mathematicians have been accused of spending their time proving
that things are equal to themselves. This statement (appropriately
by a philosopher) is rather inaccurate on two counts. In the first
place, mathematics, although the language of science, is not a science.
Rather, it is a creative art. Secondly, the fundamental results of
mathematics are often inequalities rather than equalities.”

− Beckenbach and Bellman

1. Introduction and Preliminaries

In Mathematics, the branch of inequality is becoming more popular day by day
due to its applications in almost every field of life. This branch includes many impor-
tant fields of mathematics especially the theory of convex functions which is given
valuable attention in literature from the last few decades. Convexity has its many
applications in daily life like architecture, arts, business, economics, management
science and many more. Among many applications related to the aforementioned
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field, Hermite Hadamard type inequalities are one of the most important due to
a number of applications especially in the field probability theory, approximation
theory, numerical integration and many more. For further study related to the topic
see [2] − [6], [11] − [13] and the cited therein.

Before we proceed further it is to be noted that, here we list down some notation
which we would use in this article:

(1) X denotes the real interval [$1, $2],
(2) X◦ denotes the interior of X

(3) and β($1, $2) =
∫ 1

0
u$1−1(1−u)$2−1du, $1, $2 > 0 is the famous Euler

Beta function.

We shall begin with some important definitions and useful results:

Definition 1.1 ([1]). A function ξ : X → R is called convex, if

ξ (uζ1 + (1− u)ζ2) ≤ uξ(ζ1) + (1− u)ξ(ζ2),

∀ ζ1, ζ2 ∈ X and u ∈ [0, 1].

Theorem 1.2 ([8]). If ξ : X → R is a convex function, then ξ must holds

ξ

(
$1 + $2

2

)
≤ 1

$2 −$1

$2∫

$1

ξ(ζ)dζ ≤ ξ($1) + ξ($2)
2

.(1.1)

The above stated result is well known as Hermite Hadamard dual inequality for
convex function in literature.

Remark 1.3. It is to be noted that for concave function ξ, both inequalities would
be in reverse order. Also, Hadamard’s inequality may be regarded as a special case
of refinement of Jensen’s inequality.

In [9], İşcan obtained an integral inequality named as Hölder-İşcan integral in-
equality which gives better results than the classical Hölder’s integral inequality [12]
is defined as:

Theorem 1.4. Let p > 1 with 1
p + 1

q = 1. If ξ1 and ξ2 are real functions defined on
[$1, $2] and if |ξ1|p and |ξ2|q are integrable on [$1, $2], then

$2∫

$1

|ξ1(u)ξ2(u)|du
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≤ 1
$2 −$1







$2∫

$1

($2 − u)|ξ1(u)|pdu




1
p




$2∫

$1

($2 − u)|ξ2(u)|qdu




1
q

+




$2∫

$1

(u−$1)|ξ1(u)|pdu




1
p




$2∫

$1

(u−$1)|ξ2(u)|qdu




1
q


 .(1.2)

Remark 1.5. Note that if we put p = q = 2, the above inequality gives us improved
Cauchy−Schwarz integral inequality.

A different representation of Hölder-İşcan integral inequality is stated as:

Theorem 1.6. Let ξ1, ξ2 are real valued functions defined on [$1, $2] and if |ξ1|
and |ξ1||ξ2|q are integrable on [$1, $2], then for q ≥ 1 we have:

$2∫

$1

|ξ1(u)ξ2(u)|du

≤ 1
$2 −$1







$2∫

$1

($2 − u)|ξ1(u)|du




1− 1
q



$2∫

$1

($2 − u)|ξ1(u)||ξ2(u)|qdu




1
q

+




$2∫

$1

(u−$1)|ξ1(u)|du




1− 1
q



$2∫

$1

(u−$1)|ξ1(u)||ξ2(u)|qdu




1
q


 .(1.3)

The above inequality is known as Improved power mean integral inequality (see
[10]), which is the refinement of Power mean integral inequality [14].

Now we are stating the following identity extracted from [3] which will be used
to derive our main results of this article.

Lemma 1.7. Let ξ : X ⊂ R → R be a twice differentiable mapping on X◦ with
ξ′′ ∈ L[$1, $2]. Then the following identity holds:

ξ($1) + ξ($2)
2

− 1
$2 −$1

$2∫

$1

ξ(x)dζ

=
($2 −$1)2

2

1∫

0

u(1− u)ξ′′(u$1 + (1− u)$2)du.
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In [3], Bhatti, Iqbal and Hussain et. al. established the results related to Hermite
Hadamard type inequalities for convex function by using well-known Hölder and
Power mean integral inequality as follows:

Theorem 1.8. Let ξ : X ⊂ [0,∞) → R be a twice differentiable mapping on X◦

such that ξ′′ ∈ L[$1, $2], where $1, $2 ∈ X and $1 < $2. If |ξ′′|q is convex
function on [$1, $2] for q > 1 then following inequality holds:

∣∣∣∣∣∣
ξ($1) + ξ($2)

2
− 1

$2 −$1

$2∫

$1

ξ(ζ)dζ

∣∣∣∣∣∣

≤ ($2 −$1)2

2
{β(p + 1, p + 1)} 1

p

( |ξ′′($1)|q + |ξ′′($2)|q
2

) 1
q

,(1.4)

with 1
p + 1

q = 1.

Theorem 1.9. Let ξ : X ⊂ (0,∞) → R be a twice differentiable mapping on X◦

such that ξ′′ ∈ L[$1, $2], where $1, $2 ∈ X◦ and $1 < $2. If |ξ′′|q is convex
function on [$1, $2] for q ≥ 1 then following inequality holds:

∣∣∣∣∣∣
ξ($1) + ξ($2)

2
− 1

$2 −$1

$2∫

$1

ξ(ζ)dζ

∣∣∣∣∣∣
≤ ($2 −$1)2

12

( |ξ′′($1)|q + |ξ′′($2)|q
2

) 1
q

(1.5)

This article is organized as: In the next section, we are going to refine the esti-
mated bounds of the Hermite Hadamard type inequalities (right bound of (1.1)) for
twice differentiable convex functions by using newly defined Hölder−İşcan and Im-
proved power mean integral inequalities. These results would provide better bounds
than already obtained in Theorem 1.8 and 1.9. Third and fourth sections deal with
some applications related to Quadrature rules and Special means, respectively. Fifth
section is purely devoted to concluding statements and the last section gives us some
remarks and future ideas for interested researchers.

2. Various Improvements of Estimated Right Bound of Hermite
Hadamard Inequality for Twice Differentiable Convex

Function

In this section, we are going to state and prove two refined results related to
Hermite Hadamard type inequalities for twice differentiable convex function using



REFINEMENT OF HERMITE HADAMARD TYPE INEQUALITIES 37

Definition 1.1, Theorem 1.4, Theorem 1.6 and Lemma 1.7. Also, we show that our
obtained results would be better than the results obtained in Theorem 1.8 and 1.9.

Theorem 2.1. Let ξ : X ⊂ [0,∞) → R be a twice differentiable mapping on X◦

such that ξ′′ ∈ L[$1, $2], where $1, $2 ∈ X and $1 < $2. If |ξ′′|q is convex
function on [$1, $2] for q > 1 then following below stated inequality holds:

∣∣∣∣∣∣
ξ($1) + ξ($2)

2
− 1

$2 −$1

$2∫

$1

ξ(ζ)dζ

∣∣∣∣∣∣
≤ ($2 −$1)2

2
{β(p + 1, p + 2)} 1

p ×

[( |ξ′′($1)|q + 2|ξ′′($2)|q
6

) 1
q

+
(

2|ξ′′($1)|q + |ξ′′($2)|q
6

) 1
q

]
,(2.1)

with 1
p + 1

q = 1.

Proof. Using Lemma 1.7 and the definition of absolute value, we attain
∣∣∣∣∣∣
ξ($1) + ξ($2)

2
− 1

$2 −$1

$2∫

$1

ξ(ζ)dζ

∣∣∣∣∣∣

≤ ($2 −$1)2

2

1∫

0

|u(1− u)||ξ′′(u$1 + (1− u)$2)|du.(2.2)

Applying (1.2) to
1∫
0

|u(1− u)||ξ′′(u$1 + (1− u)$2)|du implies

1∫

0

|u(1− u)||ξ′′(u$1 + (1− u)$2)|du

≤







1∫

0

(1− u)|u(1− u)|pdu




1
p




1∫

0

(1− u)|ξ′′(u$1 + (1− u)$2)|qdu




1
q

+




1∫

0

u|u(1− u)|pdu




1
p




1∫

0

u|ξ′′(u$1 + (1− u)$2)|qdu




1
q


 .

As we have |ξ′′|q is a convex function, so we can take

|ξ′′ (uζ1 + (1− u)ζ2) |q ≤ u|ξ′′(ζ1)|q + (1− u)|ξ′′(ζ2)|q.
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Utilizing the above two results (2.2) becomes,
∣∣∣∣∣∣
ξ($1) + ξ($2)

2
− 1

$2 −$1

$2∫

$1

ξ(ζ)dζ

∣∣∣∣∣∣
≤ ($2 −$1)2

2
×







1∫

0

up(1− u)p+1du




1
p


|ξ′′($1)|q

1∫

0

u(1− u)du + |ξ′′($2)|q
1∫

0

(1− u)2du




1
q

+




1∫

0

up+1(1− u)pdu




1
p


|ξ′′($1)|q

1∫

0

u2du + |ξ′′($2)|q
1∫

0

u(1− u)du




1
q


 .

After using the following below stated facts, the result of Theorem 2.1 is accom-
plished.

1∫

0

up+1(1− u)pdt =

1∫

0

up(1− u)p+1du = β(p + 1, p + 2),

1∫

0

u(1− u)du =
1
6

and
1∫

0

u2du =

1∫

0

(1− u)2du =
1
3
.

¤

Remark 2.2. Here we claim that inequality (2.1) of Theorem 2.1 is better than the
inequality (1.4).

Proof. Since the function h : [0,∞) → R, h(ζ) = ζn, n ∈ (0, 1] is concave, we can
write:

$1
n + $2

n

2
=

h($1) + h($2)
2

≤ h

(
$1 + $2

2

)
=

(
$1 + $2

2

)n

(2.3)

∀ $1, $2 ≥ 0. For the above inequality if we choose

$1 =
|ξ′′($1)|q + 2|ξ′′($2)|q

6
, $2 =

2|ξ′′($1)|q + |ξ′′($2)|q
6
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and n = 1
q . Applying the inequality (2.3) to the inequality (2.1), we have

∣∣∣∣∣∣
ξ($1) + ξ($2)

2
− 1

$2 −$1

$2∫

$1

ξ(ζ)dζ

∣∣∣∣∣∣
≤ ($2 −$1)2

2
{β(p + 1, p + 2)} 1

p ×

[( |ξ′′($1)|q + 2|ξ′′($2)|q
6

) 1
q

+
(

2|ξ′′($1)|q + |ξ′′($2)|q
6

) 1
q

]

≤ ($2 −$1)2 {β(p + 1, p + 2)} 1
p ×

[
1
2

( |ξ′′($1)|q + 2|ξ′′($2)|q + 2|ξ′′($1)|q + |ξ′′($2)|q
6

)] 1
q

=
($2 −$1)2

2
1
q

{β(p + 1, p + 2)} 1
p

[ |ξ′′($1)|q + |ξ′′($2)|q
2

] 1
q

By using

β(ζ1, ζ2 + 1) =
ζ2

ζ1 + ζ2
β(ζ1, ζ2)

we get our required result i.e. inequality (1.4). ¤

Theorem 2.3. Let ξ : X ⊂ (0,∞) → R be a twice differentiable mapping on X◦

such that ξ′′ ∈ L[$1, $2], where $1, $2 ∈ X◦ and $1 < $2. If |ξ′′|q is convex
function on [$1, $2] for q ≥ 1 then following inequality holds:

∣∣∣∣∣∣
ξ($1) + ξ($2)

2
− 1

$2 −$1

$2∫

$1

ξ(ζ)dζ

∣∣∣∣∣∣
≤ ($2 −$1)2

24
×

[(
2|ξ′′($1)|q + 3|ξ′′($2)|q

5

) 1
q

+
(

3|ξ′′($1)|q + 2|ξ′′($2)|q
5

) 1
q

]
.(2.4)

Proof. Using Lemma 1.7 and the definition of absolute value, we attain
∣∣∣∣∣∣
ξ($1) + ξ($2)

2
− 1

$2 −$1

$2∫

$1

ξ(ζ)dζ

∣∣∣∣∣∣

≤ ($2 −$1)2

2

1∫

0

|u(1− u)||ξ′′(u$1 + (1− u)$2)|du.(2.5)
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Applying (1.3) to
1∫
0

|u(1− u)||ξ′′(u$1 + (1− u)$2)|du implies

1∫

0

|u(1− u)||ξ′′(u$1 + (1− u)$2)|du

≤







1∫

0

(1− u)|u(1− u)|du




1− 1
q



1∫

0

(1− u)|u(1− u)||ξ′′(u$1 + (1− u)$2)|qdu




1
q

+




1∫

0

u|u(1− u)|du




1− 1
q



1∫

0

u|u(1− u)||ξ′′(u$1 + (1− u)$2)|qdu




1
q


 .

As we have |ξ′′|q is a convex function, so we can take

|ξ′′ (uζ1 + (1− u)ζ2) |q ≤ u|ξ′′(ζ1)|q + (1− u)|ξ′′(ζ2)|q.

Utilizing the above two results (2.5) becomes,
∣∣∣∣∣∣
ξ($1) + ξ($2)

2
− 1

$2 −$1

$2∫

$1

ξ(ζ)dζ

∣∣∣∣∣∣
≤ ($2 −$1)2

2
×







1∫

0

u(1− u)2du




1− 1
q

|ξ′′($1)|q

1∫

0

u2(1− u)2du + |ξ′′($2)|q
1∫

0

u(1− u)3du




1
q

+




1∫

0

u2(1− u)du




1− 1
q

|ξ′′($1)|q

1∫

0

u3(1− u)du + |ξ′′($2)|q
1∫

0

u2(1− u)2du




1
q


 .

After using the following below stated facts, the result of Theorem 2.3 is accom-
plished.

1∫

0

u2(1− u)du =

1∫

0

u(1− u)2du =
1
12

,

1∫

0

u2(1− u)2du =
1
30
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and
1∫

0

u(1− u)3du =

1∫

0

u3(1− u)du =
1
20

.

¤

Remark 2.4. Also we claim that inequality (2.4) of Theorem 2.3 is better than the
inequality (1.5).

Proof. We can prove this claim in a similar manner as we done in Remark 2.2. So,
we replace

$1 =
2|ξ′′($1)|q + 3|ξ′′($2)|q

5
, $2 =

3|ξ′′($1)|q + 2|ξ′′($2)|q
5

and n = 1
q in the inequality (2.3) and apply it to the inequality (2.4), we have

∣∣∣∣∣∣
ξ($1) + ξ($2)

2
− 1

$2 −$1

$2∫

$1

ξ(ζ)dζ

∣∣∣∣∣∣
≤ ($2 −$1)2

24
×

[(
2|ξ′′($1)|q + 3|ξ′′($2)|q

5

) 1
q

+
(

3|ξ′′($1)|q + 2|ξ′′($2)|q
5

) 1
q

]

≤ ($2 −$1)2

12

[
1
2

(
2|ξ′′($1)|q + 3|ξ′′($2)|q + 3|ξ′′($1)|q + 2|ξ′′($2)|q

5

)] 1
q

=
($2 −$1)2

12

[ |ξ′′($1)|q + |ξ′′($2)|q
2

] 1
q

which is our required result i.e., inequality (1.5). ¤

In the next two sections we are going to give some applications of our obtained
results to trapezoidal rule and special means.

3. Application to Trapezoidal Rule

Let J be a division of the interval [$1, $2], i.e., J : $1 = y0 < y1 < ... < yn−1 <

yn = $2 and consider the quadrature formula

I =

$2∫

$1

ξ(ζ)dζ = T (ξ, J) + R(ξ, J)
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where

T (ξ, J) =
n−1∑

k=0

ξ(yk) + ξ(yk+1)
2

(yk+1 − yk)

is the trapezoidal formula and R(ξ, J) denotes the associated approximation error
of the integral I.

Theorem 3.1. Let ξ : X ⊂ [0,∞) → R be a twice differentiable mapping on X◦ such
that ξ′′ ∈ L[$1, $2], where $1, $2 ∈ X and $1 < $2. If |ξ′′|q is convex function on
[$1, $2] for every partition J of [$1, $2] with q ≥ 1 then following inequality holds:

|R(ξ, J)| ≤ 1
2

n−1∑

k=0

(yk+1 − yk)3 {β(p + 1, p + 2)} 1
p ×

[( |ξ′′(yk)|q + 2|ξ′′(yk+1)|q
6

) 1
q

+
(

2|ξ′′(yk)|q + |ξ′′(yk+1)|q
6

) 1
q

]

≤ 1
2

n−1∑

k=0

(yk+1 − yk)3 {β(p + 1, p + 1)} 1
p

[ |ξ′′(yk)|q + |ξ′′(yk+1)|q
2

] 1
q

,(3.1)

with 1
p + 1

q = 1.

Proof. Applying inequality (2.1) on [yk, yk+1] and summing over k from 0 to n − 1
and then by using triangular inequality we get (3.1). ¤

Theorem 3.2. Let ξ : X ⊂ (0,∞) → R be a twice differentiable mapping on X◦

such that ξ′′ ∈ L[$1, $2], where $1, $2 ∈ X◦ and $1 < $2. If |ξ′′|q is convex
function on [$1, $2] for every division J of [$1, $2] with q ≥ 1 then following
inequality holds:

|R(ξ, J)| ≤ 1
24

n−1∑

k=0

(yk+1 − yk)3×
[(

2|ξ′′(yk)|q + 3|ξ′′(yk+1)|q
5

) 1
q

+
(

3|ξ′′(yk)|q + 2|ξ′′(yk+1)|q
5

) 1
q

]

≤ 1
12

n−1∑

k=0

(yk+1 − yk)3
[ |ξ′′(yk)|q + |ξ′′(yk+1)|q

2

] 1
q

.(3.2)

Proof. The proof of the above result is followed with a similar technique applying
on inequality (2.4) instead of inequality (2.1) as we done in Theorem 3.1. ¤
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4. Application to Special Means

We start with the definition of following special means extracted from [7]:
(1) The Arithmetic mean:

A = A($1, $2) =
$1 + $2

2
; $1, $2 ∈ [0,∞).

(2) The Harmonic mean:

H = H($1, $2) =
2$1$2

$1 + $2
; $1, $2 ∈ (0,∞).

(3) The Geometric mean:

G = G($1, $2) =
√

$1$2; $1, $2 ∈ [0,∞).

(4) The Logarithmic mean:

L = L($1, $2) =
$2 −$1

ln$2 − ln $1
; $1 6= $2 $1, $2 ∈ (0,∞).

(5) The p-Logarithmic mean:

Lp = Lp($1, $2) =
[

$2
p+1 −$1

p+1

(p + 1)($2 −$1)

] 1
p

; $1 6= $2, $1, $2 ∈ (0,∞),

where p ∈ R− {−1, 0}.
(6) The Identric mean:

I = I($1, $2) =
1
e

[
$2

$2

$1
$1

] 1
$2−$1

; $1 6= $2 $1, $2 ∈ (0,∞).

Now we are going to give some relations among different means by using results
obtained in previous section.

Example 4.1. Let the function ξ be defined by ξ(ζ) =
1
ζ

and 0 < $1 < $2 then

we have:

1
$2 −$1

$2∫

$1

ξ(ζ)dζ = L−1($1, $2) = L−1,

ξ($1) + ξ($2)
2

= H−1($1, $2) = H−1,

(
2|ξ′′($1)|q + |ξ′′($2)|q

6

) 1
q

=
2

G6

(
$1

3q + 2$2
3q

6

) 1
q

,
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( |ξ′′($1)|q + 2|ξ′′($2)|q
6

) 1
q

=
2

G6

(
2$1

3q + $2
3q

6

) 1
q

,

(
3|ξ′′($1)|q + 2|ξ′′($2)|q

5

) 1
q

=
2

G6

(
2$1

3q + 3$2
3q

5

) 1
q

and
(

2|ξ′′($1)|q + 3|ξ′′($2)|q
5

) 1
q

=
2

G6

(
3$1

3q + 2$2
3q

5

) 1
q

.

(1) Then (2.1) becomes,
∣∣H−1 − L−1

∣∣

≤ ($2 −$1)2

G6
{β(p + 1, p + 2)} 1

p

[(
$1

3q + 2$2
3q

6

) 1
q

+
(

2$1
3q + $2

3q

6

) 1
q

]
.

(4.1)

(2) Then (2.4) becomes,

∣∣H−1 − L−1
∣∣ ≤ ($2 −$1)2

12G6

[(
2$1

3q + 3$2
3q

5

) 1
q

+
(

3$1
3q + 2$2

3q

5

) 1
q

]
.(4.2)

Example 4.2. Let the function ξ be defined by ξ(ζ) = ζn with 0 < $1 < $2 and
n ∈ R \ {−1, 0} then we have:

1
$2 −$1

$2∫

$1

ξ(ζ)dζ = Ln
n($1, $2) = Ln

n,

ξ($1) + ξ($2)
2

= A ($1
n, $2

n) ,

(
2|ξ′′($1)|q + |ξ′′($2)|q

6

) 1
q

= n(n− 1)

(
2$1

q(n−2) + $2
q(n−2)

6

) 1
q

,

( |ξ′′($1)|q + 2|ξ′′($2)|q
6

) 1
q

= n(n− 1)

(
$1

q(n−2) + 2$2
q(n−2)

6

) 1
q

,

(
3|ξ′′($1)|q + 2|ξ′′($2)|q

5

) 1
q

= n(n− 1)

(
3$1

q(n−2) + 2$2
q(n−2)

5

) 1
q
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and
(

2|ξ′′($1)|q + 3|ξ′′($2)|q
5

) 1
q

= n(n− 1)

(
2$1

q(n−2) + 3$2
q(n−2)

5

) 1
q

.

(1) Then (2.1) becomes,

|Ln
n −A ($1

n, $2
n)| ≤ ($2 −$1)2

2
{β(p + 1, p + 2)} 1

p×

n(n− 1)




(
2$1

q(n−2) + $2
q(n−2)

6

) 1
q

+

(
$1

q(n−2) + 2$2
q(n−2)

6

) 1
q


 .(4.3)

(2) Then (2.4) becomes,

|Ln
n −A ($1

n, $2
n)| ≤ ($2 −$1)2

24
[n(n− 1)]×




(
3$1

q(n−2) + 2$2
q(n−2)

5

) 1
q

+

(
2$1

q(n−2) + 3$2
q(n−2)

5

) 1
q


 .(4.4)

Example 4.3. Let the function ξ be defined by ξ(ζ) = − ln ζ and 0 < $1 < $2

then we have:

1
$2 −$1

$2∫

$1

ξ(ζ)dζ = − ln I($1, $2) = − ln I,

ξ($1) + ξ($2)
2

= − ln G($1, $2) = − lnG,

(
2|ξ′′($1)|q + |ξ′′($2)|q

6

) 1
q

=
1

G4

(
$1

2q + 2$2
2q

6

) 1
q

,

( |ξ′′($1)|q + 2|ξ′′($2)|q
6

) 1
q

=
1

G4

(
2$1

2q + $2
2q

6

) 1
q

,

(
3|ξ′′($1)|q + 2|ξ′′($2)|q

5

) 1
q

=
1

G4

(
2$1

2q + 3$2
2q

5

) 1
q

and
(

2|ξ′′($1)|q + 3|ξ′′($2)|q
5

) 1
q

=
1

G4

(
3$1

2q + 2$2
2q

5

) 1
q

.
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(1) Then (2.1) becomes,
∣∣∣∣ln

I

G

∣∣∣∣ ≤
($2 −$1)2

2G4
{β(p + 1, p + 2)} 1

p×
[(

$1
2q + 2$2

2q

6

) 1
q

+
(

2$1
2q + $2

2q

6

) 1
q

]
.(4.5)

(2) Then (2.4) becomes,
∣∣∣∣ln

I

G

∣∣∣∣ ≤
($2 −$1)2

24G4

[(
2$1

2q + 3$2
2q

5

) 1
q

+
(

3$1
2q + 2$2

2q

5

) 1
q

]
.(4.6)

5. Conclusion

Hermite Hadamard dual inequality is one of the most recognized inequalities. We
can find its various refinements and variants in literature. We have given its refine-
ment for ordinary convex functions. In Section 2, we have stated two distinct results
related to refinement of estimated right bound of Hermite Hadamard dual inequality
in the absolute sense for the aforementioned class of twice differentiable functions.
Here we used two distinct techniques including Hölder−İşcan and Improved power
mean integral inequalities. These results are better than the results obtained in the
article [3]. In Section 3 and 4, we have obtained some relations between our de-
rived results with well known trapezoidal rule and special means, respectively. Last
section is devoted to some remarks and future ideas for readers.

Now, we are going to give some remarks and future ideas related to our stated
results.

6. Remarks and Future Ideas

(1) All the inequalities given in this article can be stated in reverse direction
for concave function using simple relation ξ is concave if and only if −ξ is
convex.

(2) From [15, p. 140] for convex function ξ we have that

1
$2 −$1

$2∫

$1

ξ(ζ)dζ − ξ

(
$1 + $2

2

)
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≤ ξ($1) + ξ($2)
2

− 1
$2 −$1

$2∫

$1

ξ(ζ)dζ(6.1)

In all our results stated in Section 2, we have found refined bounds only for∣∣∣∣∣∣
ξ($1) + ξ($2)

2
− 1

$2 −$1

$2∫

$1

ξ(ζ)dζ

∣∣∣∣∣∣
by using relation given in (6.1) we automatically get refined bounds for∣∣∣∣∣∣

ξ

(
$1 + $2

2

)
− 1

$2 −$1

$2∫

$1

ξ(ζ)dζ

∣∣∣∣∣∣
(3) One may also work on Fejer Hermite Hadamard type inequality by intro-

ducing symmetric weights to our obtained results.
(4) One may also work on Weighted Hermite Hadamard type inequality by

introducing non symmetric weights to our obtained results.
(5) One may do similar work by using various distinct classes of convex func-

tions.
(6) One may try to state all results stated in this article in discrete case.
(7) One may also state all results stated in this article in Multi-dimensions.
(8) One can extend this work to time scale domain or Quantum Calculus.
(9) One can try to attain this work for Fuzzy set theory.
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