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TWO SUBRAHMANYAM TYPE OF COMMON FIXED POINT
THEOREMS IN COMPLETE METRIC SPACES

Seung Hyun Kim a and Mee Kwang Kang b, ∗

Abstract. In this paper, we introduce new types of weakly Picard operators being
available to a much wider class of maps, and prove common fixed point theorems of
Subrahmanyam type for two these weakly Picard operators in the collection of single-
valued and multi-valued mappings in complete metric spaces. Our results extend
and generalize the corresponding fixed point theorems in the literature [3, 6].

1. Introduction

Suzuki [8] categorized fixed point theorems on metric spaces (X, d) into the fol-
lowing four types;

(1) Leader type [4] : T has a unique fixed point and {Tnx} converges to the
fixed point for all x ∈ X.

(2) Unnamed type : T has a unique fixed point and {Tnx} does not necessarily
converge to the fixed point for all x ∈ X.

(3) Subrahmanyam type [7] : T may have more than one fixed point and {Tnx}
converges to a fixed point for all x ∈ X.

(4) Caristi type [1, 2] : T may have more than one fixed point and {Tnx} does
not necessarily converge to a fixed point for all x ∈ X.

Khojasteh et. al. [3] introduced two types of fixed point theorems in the collection
of multi-valued and single valued mappings and proved them, which belongs to (3).
One year later, Rhoades [6] extended the results of Khojasteh et. al. [3] to two maps
and to a much wider class of maps.
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Motivated by the previous works, in this paper, we establish two Subrahmanyam
types of common fixed point theorems in the collection of single-valued and multi-
valued mappings in metric spaces, which generalize the corresponding results of
Rhoades [6].

2. Common Fixed Point Theorem for Single-valued Mappings

First of all, we prove the following lemma to obtain a common fixed point theorem.

Lemma 2.1. Let (X, d) be a complete metric space and let S and T be self-mappings
on X satisfying, for all x, y ∈ X,

ϕ(d(Sx, Ty)) ≤ N(x, y) · ϕ(m(x, y))− ψ(m(x, y)),(2.1)

where

N(x, y) =
max{d(x, y), d(x, Sx) + d(y, Ty), d(x, Ty) + d(y, Sx)}

d(x, Sx) + d(y, Ty) + 1
,(2.2)

m(x, y) = max{d(x, y), d(x, Sx), d(y, Ty),
d(x, Ty) + d(y, Sx)

2
},(2.3)

ϕ : [0,∞) → [0,∞) a non-decreasing continuous function and ψ : [0,∞) → [0,∞) a
continuous function with ψ(t) = 0 if and only if t = 0. Then each fixed point of S

is a fixed point of T , and vice versa.

Proof. Let p is a fixed point of S and suppose that p is not a fixed point of T . From
(2.2), we have

N(p, p) =
max{d(p, p), d(p, Sp) + d(p, Tp), d(p, Tp) + d(p, Sp)}

d(p, Sp) + d(p, Tp) + 1
=

d(p, Tp)
d(p, Tp) + 1

< 1

and, from (2.3),

m(p, p) = max{d(p, p), d(p, Sp), d(p, Tp),
d(p, Tp) + d(p, Sp)

2
} = d(p, Tp).

Substituting the above inequality and equality into (2.1), we get

ϕ(d(p, Tp)) = ϕ(d(Sp, Tp)) ≤ N(p, p) · ϕ(m(p, p))− ψ(m(p, p))

< ϕ(d(p, Tp))− ψ(d(p, Tp)),

which implies that ψ(d(p, Tp)) < 0. This contradicts the fact that the range of ψ is
[0,∞). Therefore, p is a fixed point of T .

Similarly, it can be shown that, if q is a fixed point of T then it is also a fixed
point of S. ¤
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Theorem 2.2. Assume that S and T satisfy the hypotheses of Lemma 2.1. Then
(a) S and T have at least one common fixed point p ∈ X.
(b) For even natural number n, {(ST )

n
2 x} and {T (ST )

n
2 x} converge to a common

fixed point for x ∈ X.
(c) If p and q are distinct common fixed ponits of S and T , then d(p, q) ≥ 1

2 .

Proof. (a) Let x0 be an arbitrary element of X and define {xn} by

x2n+1 = Sx2n, x2n+2 = Tx2n+1 for n ∈ N ∪ {0}.(2.4)

Suppose that there exists n ∈ N ∪ {0} such that x2n+1 = x2n+2. Then, from (2.4),
x2n+1 = x2n+2 = Tx2n+1, thus x2n+1 is a fixed point of T . By Lemma 2.1, x2n+1 is
a fixed point of S and so it is a common fixed point of S and T .

Similarly, if there exists n ∈ N∪{0} such that x2n = x2n+1, then x2n is a common
fixed point of S and T .

Therefore, we assume that

xn 6= xn+1 for n ∈ N ∪ {0}.(2.5)

From (2.1) and (2.4), we have

ϕ(d(x2n+1, x2n+2)) = ϕ(d(Sx2n, Tx2n+1))

≤ N(x2n, x2n+1) · ϕ(m(x2n, x2n+1))− ψ(m(x2n, x2n+1)).(2.6)

Defining dn := d(xn, xn+1), from (2.2), (2.4) and the metric triangle property,

N(x2n, x2n+1) = max{d(x2n, x2n+1), d(x2n, Sx2n) + d(x2n+1, Tx2n+1), d(x2n, Tx2n+1)

+d(x2n+1, Sx2n)}/(d(x2n, Sx2n) + d(x2n+1, Tx2n+1) + 1)

= max{d(x2n, x2n+1), d(x2n, x2n+1) + d(x2n+1, x2n+2), d(x2n, x2n+2)

+d(x2n+1, x2n+1)}/(d(x2n, x2n+1) + d(x2n+1, x2n+2) + 1)

=
max{d2n, d2n + d2n+1, d2n + d2n+1}

d2n + d2n+1 + 1

=
d2n + d2n+1

d2n + d2n+1 + 1
:= β2n,(2.7)

and

m(x2n, x2n+1) = max{d(x2n, x2n+1), d(x2n, Sx2n), d(x2n+1, Tx2n+1),
d(x2n, Tx2n+1) + d(x2n+1, Sx2n)

2
}(2.8)
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= max{d(x2n, x2n+1), d(x2n, x2n+1), d(x2n+1, x2n+2),
d(x2n, x2n+2) + d(x2n+1, x2n+1)

2
}

= max{d2n, d2n+1}.

Substituting (2.7) and (2.8) into (2.6), since d2n 6= 0, we obtain the following in-
equality

ϕ(d2n+1) ≤ β2n · ϕ(max{d2n, d2n+1})− ψ(max{d2n, d2n+1})
< β2n · ϕ(max{d2n, d2n+1})
= β2n · ϕ(d2n).(2.9)

If max{d2n, d2n+1} = d2n+1 in the last formula, then the above inequality means
(1 − β2n)ϕ(d2n+1) < 0. Since 0 < β2n < 1, ϕ(d2n+1) < 0, which contradicts the
range of ϕ.

Applying the same method to ϕ(d2n) instead of ϕ(d2n+1) in (2.6), we have

ϕ(d2n) < β2n−1 · ϕ(d2n−1).(2.10)

Therefore, from (2.9) and (2.10), we have

ϕ(dn) < βn−1 · ϕ(dn−1) < ϕ(dn−1).

Since ϕ is non-decreasing,

dn < dn−1 for each n ∈ N.(2.11)

On the other hand, for n ∈ N, βn < βn−1. In fact, the function f : R→ R defined
by f(x) = x

x+1 is increasing and dn +dn+1 < dn−1 +dn so that we have, from (2.11),

dn + dn+1

dn + dn+1 + 1
<

dn−1 + dn

dn−1 + dn + 1
,

and thus

βn < βn−1 for n ∈ N.(2.12)

From (2.11) and (2.12), we have

dn < β1 · dn−1 < βn
1 · d0.(2.13)



TWO SUBRAHMANYAM TYPE OF COMMON FIXED POINT THEOREMS 25

For any positive integers m, n with m > n, it follows from (2.13) that

d(xn, xm) ≤
m−1∑

i=n

di <

m−1∑

i=n

βi
1 · d0

= βn
1 · d0

m−n−1∑

j=0

βj
1 <

βn
1

1− β1
d0.

Therefore {xn} is a Cauchy sequence. Since X is complete, there exists p ∈ X such
that lim

n→∞xn = p. Using (2.1)-(2.3), we have

N(x2n, p) ≤ max{d(x2n, p), d(x2n, x2n+1) + d(p, Tp), d(x2n, Tp)

+d(p, x2n+1)}/(d(x2n, x2n+1) + d(p, Tp) + 1),

m(x2n, p) ≤ max{d(x2n, p), d(x2n, x2n+1), d(p, Tp),
d(x2n, Tp) + d(p, x2n+1)

2
}

and

ϕ(d(x2n+1, Tp)) = ϕ(d(Sx2n, Tp))

≤ N(x2n, p) · ϕ(m(x2n, p))− ψ(m(x2n, p)).

Taking the limit of both sides of the above inequalty as n →∞

ϕ(d(p, Tp)) ≤ d(p, Tp)
d(p, Tp) + 1

· ϕ(d(p, Tp)),

which implies that p = Tp. From Lemma 2.1, p is a fixed point of S.
(b) For x ∈ X, let x1 = Tx. Define x2n = Sx2n−1 and x2n+1 = Tx2n for n ∈ N.

Then {(ST )
n
2 x} and {T (ST )

n
2 x} converge to common fixed point of S and T .

(c) Suppose that p and q are distinct common fixed points of S and T . From
(2.2) and (2.3), we obtain

N(p, q) =
max{d(p, q), d(p, Sp) + d(q, T q), d(p, Tq) + d(q, Sp)}

d(p, Sp) + d(q, T q) + 1
= 2d(p, q)

and

m(p, q) = max{d(p, q), d(p, Sp), d(q, T q),
d(p, Tq) + d(q, Sp)

2
} = d(p, q).

Thus, (2.1) becomes

ϕ(d(p, q)) = ϕ(d(Sp, Tq))

≤ N(p, q) · ϕ(m(p, q))− ψ(m(p, q)) ≤ 2d(p, q)ϕ(d(p, q)),

which implies that (1− 2d(p, q))ϕ(d(p, q)) ≤ 0. Hence, d(p, q) ≥ 1
2 . ¤
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If we put ϕ(t) = t and ψ(t) = 0, then Theorem 2.2 can be modified as follows,
which is the common fixed point theorem in [6].

Theorem 2.3. Let (X, d) be a complete metric space, S, T selfmaps of X satisfying

d(Sx, Ty) ≤ N(x, y)m(x, y) for all x, y ∈ X,

where

N(x, y) =
max{d(x, y), d(x, Sx) + d(y, Ty), d(x, Ty) + d(y, Sx)}

d(x, Sx) + d(y, Ty) + 1
and

m(x, y) = max{d(x, y), d(x, Sx), d(y, Ty),
d(x, Ty) + d(y, Tx)

2
}.

Then
(a) S and T have at least one common fixed point p ∈ X.
(b) For even natural number n, {(ST )

n
2 x} and {T (ST )

n
2 x} converge to a common

fixed point for x ∈ X.
(c) If p and q are distinct common fixed ponits of S and T , then d(p, q) ≥ 1

2 .

Theorem 2.4. [3] Let (X, d) be a complete metric space, T selfmaps of X satisfying

d(Tx, Ty) ≤ d(x, Ty) + d(y, Tx)
d(x, Tx) + d(y, Ty) + 1

d(x, y) for all x, y ∈ X.(2.14)

Then
(a) T has at least one fixed point p ∈ X.
(b) {Tnx} converges to a fixed point for x ∈ X.
(c) If p and q are distinct fixed ponits of T , then d(p, q) ≥ 1

2 .

Proof. If we put ϕ = I, ψ(t) = 0 and S = T in (2.1), then the inequality (2.14)
satisfies the hypotheses of Theorem 2.2 and so we obtain Theorem 2.4. ¤

3. Common Fixed Point Theorem for Multi-valued Mappings

We shall need the following notations for a common fixed point theorem on multi-
valued mappings;

CB(X) = {A|A is a nonempty closed and bounded subset of X},
D(a,B) = inf{d(a, b)|b ∈ B} for a ∈ X,

δ(a,B) = sup{d(a, b)|b ∈ B} for a ∈ X,

H(A,B) = max{sup
x∈A

D(x,B), sup
y∈B

D(y,A)}.
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Lemma 3.1 ([5]). Let A,B ∈ CB(X), and let x ∈ A. Then, for each α > 0, there
exists y ∈ B such that

d(x, y) ≤ H(A,B) + α.

Lemma 3.2. Let (X, d) be a complete metric space and let S and T be multi-valued
mappings from X into CB(X) satisfying, for all x, y ∈ X,

ϕ(H(Sx, Ty)) ≤ N(x, y) · ϕ(m(x, y))− ψ(m(x, y)),(3.1)

where

N(x, y) =
max{d(x, y), D(x, Sx) + D(y, Ty), D(x, Ty) + D(y, Sx)}

δ(x, Sx) + δ(y, Ty) + 1
,(3.2)

m(x, y) = max{d(x, y), D(x, Sx), D(y, Ty),
D(x, Ty) + D(y, Sx)

2
},(3.3)

ϕ : [0,∞) → [0,∞) a non-decreasing continuous function with ϕ(ct) = cϕ(t) and
ψ : [0,∞) → [0,∞) a continuous function with ψ(t) = 0 if and only if t = 0. Then
each fixed point of S is a fixed point of T , and vice versa.

Proof. Suppose that p is a fixed point of S. From (3.1) and the definition of H,

ϕ(D(p, Tp)) = ϕ(H(p, Tp)) = ϕ(H(Sp, Tp)) ≤ N(p, p) · ϕ(m(p, p))− ψ(m(p, p)).

From (3.2) and (3.3), we have

N(p, p) =
max{d(p, p), D(p, Sp) + D(p, Tp), D(p, Tp) + D(p, Sp)}

δ(p, Sp) + δ(p, Tp) + 1
=

D(p, Tp)
δ(p, Tp) + 1

≤ D(p, Tp)
D(p, Tp) + 1

:= β < 1

and

m(p, p) = max{d(p, p), D(p, Sp), D(p, Tp),
D(p, Tp) + D(p, Sp)

2
} = D(p, Tp).

Therefore

ϕ(D(p, Tp)) ≤ β · ϕ(D(p, Tp))− ψ(D(p, Tp))

≤ ϕ(D(p, Tp))− ψ(D(p, Tp)),

which implies that ψ(D(p, Tp)) ≤ 0. This contradicts the fact that the range of ψ

is [0,∞). Therefore, p is a fixed point of T .
Similarly, it can be shown that, if q is a fixed point of T then it is a fixed point

of S. ¤
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Theorem 3.3. Assume that S and T satisfy the hypotheses of Lemma 3.2. Then
(a) S and T have at least one common fixed point p ∈ X.
(b) For even natural number n, {(ST )

n
2 x} and {T (ST )

n
2 x} converge to a common

fixed point for x ∈ X.
(c) If p and q are distinct common fixed ponits of S and T , then d(p, q) ≥ 1

2 .

Proof. (a) Let x0 ∈ X and x1 ∈ Sx0. Define hn by

hn =
√

βn =

√
dn−1 + dn

dn−1 + dn + 1
.(3.4)

From Lemma 3.1, for 0 < h1 < 1, i.e. 1
h1
− 1 > 0, we can take x2 ∈ Tx1 such that

d(x1, x2) ≤ H(Sx0, Tx1) + (
1
h1
− 1)H(Sx0, Tx1) =

1
h1

H(Sx0, Tx1).

In a similar manner, for 0 < h2 < 1, we can take x3 ∈ Sx2 such that

d(x2, x3) = d(x3, x2) ≤ H(Sx2, Tx1) + (
1
h2
− 1)H(Sx2, Tx1) =

1
h2

H(Sx2, Tx1).

Continuing this process, for 0 < h2n < 1, we can take x2n+1 ∈ Sx2n such that

d(x2n, x2n+1) ≤ 1
h2n

H(Sx2n, Tx2n−1)(3.5)

and for 0 < h2n+1 < 1, we can take x2n+2 ∈ Tx2n+1 such that

d(x2n+1, x2n+2) ≤ 1
h2n+1

H(Sx2n, Tx2n+1).(3.6)

If there exists n ∈ N such that H(Sx2n, Tx2n−1) = 0, then Sx2n = Tx2n−1,
which implies that x2n ∈ Sx2n, since x2n ∈ Tx2n−1, and x2n is a fixed point of S.
By Lemma 3.2, x2n is a fixed point of T . Similarly, if there exists n ∈ N such that
H(Sx2n, Tx2n+1) = 0, then x2n+1 is a common fixed point of S and T . Therefore,
we assume that H(Sx2n, Tx2n−1) 6= 0 and H(Sx2n, Tx2n+1) 6= 0.

On the other hand, if there exists n ∈ N such that x2n = x2n+1, then, since
x2n+1 ∈ Sx2n, x2n is a fixed point of S. By Lemma 3.2, x2n is a fixed point of T .
Similarly, if there exists n ∈ N such that x2n+1 = x2n+2, then x2n+1 is a common
fixed point of S and T . Therefore, we also assume that xn 6= xn+1 for n ∈ N.
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From (3.2), (3.3) and (3.4), we get

N(x2n, x2n−1) = max{d(x2n, x2n−1), D(x2n, Sx2n) + D(x2n−1, Tx2n−1),

D(x2n, Tx2n−1) + D(x2n−1, Sx2n)}/(δ(x2n, Sx2n)

+δ(x2n−1, Tx2n−1) + 1)

≤ max{d2n−1, d(x2n, x2n+1) + d(x2n−1, x2n), d(x2n, x2n)

+d(x2n−1, x2n+1)}/(d(x2n, x2n+1) + d(x2n−1, x2n) + 1)

≤ max{d2n−1, d2n + d2n−1, d2n + d2n−1}
d2n + d2n−1 + 1

:= β2n(3.7)

and

m(x2n, x2n−1) = max{d(x2n, x2n−1), D(x2n, Sx2n), D(x2n−1, Tx2n−1),
D(x2n, Tx2n−1) + D(x2n−1, Sx2n)

2
}

= max{d2n−1, d(x2n, x2n+1), d(x2n−1, x2n),
d(x2n, x2n) + d(x2n−1, x2n+1)

2
}

= max{d2n−1, d2n}.(3.8)

Substituting (3.7), (3.8) into (3.5), we have

ϕ(d2n) = ϕ(d(x2n, x2n+1)) ≤ ϕ(
1

h2n
H(Sx2n, Tx2n−1)) =

1
h2n

ϕ(H(Sx2n, Tx2n−1))

≤ 1
h2n

β2n · ϕ(max{d2n−1, d2n}) ≤
√

β2n · ϕ(d2n−1).

A similar computation verifies that

ϕ(d2n+1) ≤
√

β2n+1 · ϕ(d2n).

From the above inequalities, we obtain

ϕ(dn+1) ≤
√

βn+1 · ϕ(dn) for n ∈ N.(3.9)

Therefore, {dn} is a monotone decreasing positive real sequence. Taking the limit
of both sides of (3.9) an n →∞, we have lim

n→∞ dn = 0.

For any integers m,n > 0, using (3.9),

d(xn, xm) ≤
m−1∑

k=n

dk ≤
m−1∑

k=n

(βk−1 · · ·β0)d0 = d0

m−1∑

k=n

ak,

where ak = βk−1 · · ·β0. Since lim
k→∞

ak+1

ak
= lim

k→∞
βk = 0,

∑
an converges, which

implies that {xn} is a Cauchy sequence, hence it converges to some point p ∈ X,
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since X is complete. Using (3.1)-(3.3), we have

N(x2n, p) ≤ max{d(x2n, p), d(x2n, x2n+1) + D(p, Tp), D(x2n, Tp)

+d(p, x2n+1)}/(δ(x2n, x2n+1) + δ(p, Tp) + 1),

m(x2n, p) ≤ max{d(x2n, p), d(x2n, x2n+1), D(p, Tp),
D(x2n, Tp) + d(p, x2n+1)

2
}

and

ϕ(d(x2n+1, Tp)) = ϕ(H(Sx2n, Tp))

≤ N(x2n, p) · ϕ(m(x2n, p))− ψ(m(x2n, p)).

Taking the limit of both sides of the above inequalty as n →∞

ϕ(D(p, Tp)) ≤ D(p, Tp)
D(p, Tp) + 1

· ϕ(D(p, Tp)),

which implies that p is a fixed point of T . From Lemma 3.2, p is a fixed point of S.
(b) For x ∈ X, let x1 ∈ Tx. Define x2n ∈ Sx2n−1 and x2n+1 ∈ Tx2n for n ∈ N.

Then {(ST )
n
2 x} and {T (ST )

n
2 x} converge to common fixed point of S and T .

(c) Suppose that p and q are distinct common fixed points of S and T .

d(p, q) ≤ D(p, Sp) + D(Sp, Tq) + D(Tq, q) ≤ H(Sp, Tq).(3.10)

From (3.2) and (3.3), we obtain

N(p, q) =
max{d(p, q), D(p, Sp) + D(q, T q), D(p, Tq) + D(q, Sp)}

δ(p, Sp) + δ(q, T q) + 1
= 2d(p, q)

and

m(p, q) = max{d(p, q), D(p, Sp), D(q, T q),
D(p, Tq) + D(q, Sp)

2
} = d(p, q).

Thus, (2.1) becomes

ϕ(d(p, q)) = ϕ(d(Sp, Tq))

≤ N(p, q) · ϕ(m(p, q))− ψ(m(p, q)) ≤ 2d(p, q)ϕ(d(p, q)),

which implies that (1− 2d(p, q))ϕ(d(p, q)) ≤ 0. Hence, d(p, q) ≥ 1
2 . ¤

If we put ϕ(t) = t and ψ(t) = 0, then Theorem 3.3 can be modified as follows,
which is the common fixed point theorem in [6].

Theorem 3.4. Let (X, d) be a complete metric space, S, T selfmaps of X satisfying

H(Sx, Ty) ≤ N(x, y)m(x, y) for all x, y ∈ X,
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where

N(x, y) =
max{d(x, y), D(x, Sx) + D(y, Ty), D(x, Ty) + D(y, Sx)}

δ(x, Sx) + δ(y, Ty) + 1
and

m(x, y) = max{d(x, y), D(x, Sx), D(y, Ty),
D(x, Ty) + D(y, Tx)

2
}.

Then
(a) S and T have at least one common fixed point p ∈ X.
(b) For even natural number n, {(ST )

n
2 x} and {T (ST )

n
2 x} converge to a common

fixed point for x ∈ X.
(c) If p and q are distinct common fixed ponits of S and T , then d(p, q) ≥ 1

2 .

In Theorem 3.3, if ϕ is the identity function, ψ the zero function and S = T ,
then the main theorem of Khojasteh et. al. [3] for multi-valued mappings can be
obtained as a corollary of Theorem 3.3.

Theorem 3.5. Let (X, d) be a complete metric space, T selfmaps of X satisfying

H(Tx, Ty) ≤ D(x, Ty) + D(y, Tx)
δ(x, Tx) + δ(y, Ty) + 1

d(x, y) for all x, y ∈ X.

Then T has a fixed point p ∈ X.
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